Answer:
4y = -x + 31
Step-by-step explanation:
Given that one equation in a system of equations is y = 4x - 5 write a second equation to complete the system if the solution to the system is (3,7)
Since the solution of the system is (3, 7), that means the two lines of equations meet or intersect at point X = 3 and Y = 7
Let assume that the two equations are perpendicular to each other. Then, there slope can be expressed as
M1M2 = -1
Where M1 = 4
Find M2
4M2 = -1
M2 = -1 / 4
Using general linear equation
Y = MX + C
Let's find C by substituting Y, X and M2
7 = -1 /4( 3 ) + C
7 = -3/4 + C
C = 7 + 3/4
C = 31/4
Substitute C back into the equation
Y = -1/4X + 31/4
4y = -x + 31
Therefore, the second equation is
4y = -x + 31
She would be withdrawing moey from her account or subtracting it (-)
Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
32% of 60
32% × 60
0.32 × 60
19.2
Value of x is 2.
Step-by-step explanation:
- Step 1: Given that x+1/3 = x/2
Cross-multiply to find the value of x.
⇒ 2(x + 1) = 3x
⇒ 2x + 2 = 3x
⇒ x = 2