Answer:
so density is measured in grams per cm³
but the data we have is grams and mL, but lucky for us, we can easily convert mL to cm³ but it is a bit tricky.
so you have to multiply the amount in mL by e and divide by 
which means that you have to multiply by 1, (hard,i know)
so now you know that the given liquid is 6 grams per 24 cm³
so now, we will divide the amount in grams by the volume in cm³
6/24
= 1/4 grams per cm³
Answer:
1,2,4,6,8,9,10,13
Step-by-step explanation:
Since we know the side length of the square (6), we can calculate its diagonal using pythagoras.
diag d = √(6²+6²) = 6√2 in
The diagonal is also the diameter of the circle! So the radius of the circle is half of that:
radius r = d/2 = 3√2 in
The area of the circle is πr² = π(3√2)² = 18π in²
<h3>
Answer:</h3>
B. (0, 9)
<h3>
Step-by-step explanation:</h3>
Reflection across x=a is represented by the transformation ...
... (x, y) ⇒(2a-x, y)
Reflection across y=b is represented by the transformation ...
... (x, y) ⇒ (x, 2b-y)
The double reflection, across x=2, y=1 will result in the transformation ...
... (x, y) ⇒ (2·2-x, y) ⇒ (4-x, 2·1-y) ⇒ (4-x, 2-y)
For (x, y) = X(4, -7), the transformed point is ...
... X''(4-4, 2-(-7)) = X''(0, 9)
Answer:
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The Pythagorean Theorem,
a
2
+
b
2
=
c
2
, is based on a right triangle where a and b are the lengths of the legs adjacent to the right angle, and c is the length of the hypotenuse. The relationship of sides
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
to side d is the same as that of sides a and b to side c. We use the absolute value symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example,
|
−
3
|
=
3
. ) The symbols
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
indicate that the lengths of the sides of the triangle are positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.
c
2
=
a
2
+
b
2
→
c
=
√
a
2
+
b
2
It follows that the distance formula is given as
d
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
→
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
We do not have to use the absolute value symbols in this definition because any number squared is positive.
A GENERAL NOTE: THE DISTANCE FORMULA
Given endpoints
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
, the distance between two points is given by
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
Step-by-step explanation: