A. Testing a hypothesis
This leads to the other points
Answer:
you first get the unbalanced equation to show the various products and reactants. then, you write down the atoms in each element(quantity). add the coefficients so it's equal on both sides, and get state of matter
Explanation:
solution:
The Enter–Doudoroff pathway describes an alternate series of reactions that catabolize glucose to pyruvate using a set of enzymes different from those used in either glycolysis or the pentose phosphate pathway. .... Most bacteria use glycolysis and the pentose phosphate pathway.
Presuming the arrow is between H20 and CO
On the left there are 2 gas moles.
On the right there are 4 gas moles.
The equilibrium will shift to the side with the most no. He gas moles when pressure is decreased.
Therefore the answer is A, since 4>2.
If you have any questions, feel free to ask
<u>Answer:</u> The pH of the solution is 1.703
<u>Explanation:</u>
We are given:
Concentration of monochloroacetic acid = 0.31 M
The chemical equation for the dissociation of monochloroacetic acid follows:

<u>Initial:</u> 0.31
<u>At eqllm:</u> 0.31-x x x
The expression of
for above equation follows:
![K_a=\frac{[H^+][C_2H_2ClO_2^-}}{[HC_2H_2ClO_2]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_2H_2ClO_2%5E-%7D%7D%7B%5BHC_2H_2ClO_2%5D%7D)
We are given:

Putting values in above equation follows:

Neglecting the negative value of 'x' because concentration cannot be negative.
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)

Hence, the pH of the solution is 1.703