Simplify both sides:
x
—- = -9
4
now isolate the variable (x):
x= -9 • 4
x= -36
Answer:
Step-by-step explanation:
the formula for an arithmetic sequence is
a, a+d,a+3d,a+3d etc, where d is the common difference
we have the terms -6, 13,23
first term is -6
-6+19=13
however, 13+10=23
this is not an arithmetic sequence
Answer:
x = -5
Step-by-step explanation:
i took algebra a couple years ago :)
Answer:
0
Step-by-step explanation:
given that we roll a fair die repeatedly until we see the number four appear and then we stop.
the number 4 can appear either in I throw, or II throw or .... indefinitely
So X = the no of throws can be from 1 to infinity
This is a discrete distribution countable.
Sample space= {1,2,.....}
b) Prob ( 4 never appears) = Prob (any other number appears in all throws)
= 
where n is the number of throws
As n tends to infinity, this becomes 0 because 5/6 is less than 1.
Hence this probability is approximately 0
Or definitely 4 will appear atleast once.
Answer:
The percent of callers are 37.21 who are on hold.
Step-by-step explanation:
Given:
A normally distributed data.
Mean of the data,
= 5.5 mins
Standard deviation,
= 0.4 mins
We have to find the callers percentage who are on hold between 5.4 and 5.8 mins.
Lets find z-score on each raw score.
⇒
...raw score,
=
⇒ Plugging the values.
⇒
⇒
For raw score 5.5 the z score is.
⇒
⇒
Now we have to look upon the values from Z score table and arrange them in probability terms then convert it into percentages.
We have to work with P(5.4<z<5.8).
⇒ 
⇒ 
⇒
⇒
and
.<em>..from z -score table.</em>
⇒ 
⇒
To find the percentage we have to multiply with 100.
⇒ 
⇒
%
The percent of callers who are on hold between 5.4 minutes to 5.8 minutes is 37.21