Answer:
Step-by-step explanation:
Suppose we a point
such that its distance from either the point
or
is the same.
Using this information we can formula:
distance AP = distance BP
first, let's find the distance from AP, using the distance formula.
![r = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-%20y_2%29%5E2%20%2B%20%28z_1%20-%20z_2%29%5E2%7D)
![AP = \sqrt{(3 - x_2)^2 + (4 - y_2)^2 + (-5 - z_2)^2}](https://tex.z-dn.net/?f=AP%20%3D%20%5Csqrt%7B%283%20-%20x_2%29%5E2%20%2B%20%284%20-%20y_2%29%5E2%20%2B%20%28-5%20-%20z_2%29%5E2%7D)
similarly, we can find the distance BP
![BP = \sqrt{(-2 - x_2)^2 + (1 - y_2)^2 + (4 - z_2)^2}](https://tex.z-dn.net/?f=BP%20%3D%20%5Csqrt%7B%28-2%20-%20x_2%29%5E2%20%2B%20%281%20-%20y_2%29%5E2%20%2B%20%284%20-%20z_2%29%5E2%7D)
since both distances are exactly the same we can equate them
![AP = BP](https://tex.z-dn.net/?f=AP%20%3D%20BP)
![\sqrt{(3 - x_2)^2 + (4 - y_2)^2 + (-5 - z_2)^2} = \sqrt{(-2 - x_2)^2 + (1 - y_2)^2 + (4 - z_2)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%283%20-%20x_2%29%5E2%20%2B%20%284%20-%20y_2%29%5E2%20%2B%20%28-5%20-%20z_2%29%5E2%7D%20%3D%20%5Csqrt%7B%28-2%20-%20x_2%29%5E2%20%2B%20%281%20-%20y_2%29%5E2%20%2B%20%284%20-%20z_2%29%5E2%7D)
we can simplify it a bit squaring both sides, and getting rid of the subscripts.
![(3 - x)^2 + (4 - y)^2 + (-5 - z)^2 = (-2 - x)^2 + (1 - y)^2 + (4 - z)^2](https://tex.z-dn.net/?f=%283%20-%20x%29%5E2%20%2B%20%284%20-%20y%29%5E2%20%2B%20%28-5%20-%20z%29%5E2%20%3D%20%28-2%20-%20x%29%5E2%20%2B%20%281%20-%20y%29%5E2%20%2B%20%284%20-%20z%29%5E2)
what we have done here is formulated an equation which consists of any point P that will have the same distance from (3,4,-5) and (-2,1,4).
To put it more concretely,
This is the equation of the the plane from that consists of all points (P) from which the distance from both (3,4,-5) and (-2,1,4) are equal.