Answer:
Inside the air sacs, oxygen moves across paper-thin walls to tiny blood vessels called capillaries and into your blood. A protein called haemoglobin in the red blood cells then carries the oxygen around your body.
Explanation:
Hope this helps
* More than 40 proteins and glycoproteins involved in the complement system are synthesized by the liver, macrophages, epithelial cells, they are present in the blood in plasmatic form, membrane, some have an enzymatic activity, regulator or membrane receptorThese are elements of the humoral innate immune response, they fight infections, purify immune complexes and apoptotic bodies.
<span>There are indeed three ways to activate the complement:</span>
Classical pathway: Activated by Immunoglobulins in immune complexes, aggregated Immunoglobulins, DNA, CRP, apoptotic bodies .......it involves nine fractions, starting with C1, then C4, C2, C3, to form a classical C5 convertase, then, activation of C5, C6, C7, C8, C9.
Alternative pathway: activated by polysaccharides (bacterial endotoxin), vascular wall poor in sialic acid, aggregated IgE ...C3b like is the first component in the alternate channel cascade, it will create an amplification loop, and form an alternative C5 convertase.
Lecithin pathway: Activated by mannose, fucose (carbohydrate of microorganisms)The first component is the complex MBL / MASP1 / MASP2: "mannose-binding protein": works according to the same principle as the complex C1 of the classical way (MASP2 cleaves the C4 and the rest of the cascade is equivalent to that of the classical way).
the three ways have the same outcome: A C5 convertase (formed by one of the pathways) cleaves C5 into C5a and C5b: C5b is deposited far from other fractions on the antigenic surface. The fixation of C5b in the cell is followed by that of C6, C7, C8, and C9 (9 molecules of C9): formation of the membrane attack complex (MAC) ==> Death of the cell by osmotic shock
The flooding of half part of the forest have successful separate the population of frogs in that ecosystem into two different set of frogs. This is an example of allopatric speciation, that is, the population become separated as a result of geographical barrier. This separation will make the two set of frog population to become new species. On the long run, the two species may become unable to relate sexually.
Fan mail?
I am it sure but that is what you generally call it or just compliments
The mitochondria is the powerhouse of the cell. on a serious note, The most prominent roles of mitochondria are to produce the energy currency of the cell through respiration, and to regulate cellular metabolism