Answer:
Step-by-step explanation:
Hello!
The study variable is:
X: number of customers that recognize a new product out of 120.
There are two possible recordable outcomes for this variable, the customer can either "recognize the new product" or " don't recognize the new product". The number of trials is fixed, assuming that each customer is independent of the others and the probability of success is the same for all customers, p= 0.6, then we can say this variable has a binomial distribution.
The sample proportion obtained is:
p'= 54/120= 0.45
Considering that the sample size is large enough (n≥30) you can apply the Central Limit Theorem and approximate the distribution of the sample proportion to normal: p' ≈ N(p;
)
The other conditions for this approximation are also met: (n*p)≥5 and (n*q)≥5
The probability of getting the calculated sample proportion, or lower is:
P(X≤0.45)= P(Z≤
)= P(Z≤-3.35)= 0.000
This type of problem is for the sample proportion.
I hope this helps!
Answer:
z=6
Step-by-step explanation:
z/3 + 1/2 = 5/2
Subtract 1/2 from each side
z/3 + 1/2-1/2 = 5/2-1/2
z/3 = 4/2
z/3 =2
Multiply each side by 3
z/3*3 = 2*3
z = 6
The sum of the equation is 14,752
To solve this, set up two equations using the information you're given. Let's call our two numbers a and b:
1) D<span>ifference of two numbers is 90
a - b (difference of two numbers) = 90
2) The quotient of these two numbers is 10
a/b (quotient of the two numbers) = 10
Now you can solve for the two numbers.
1) Solve the second equation for one of the variables. Let's solve for a:
a/b = 10
a = 10b
2) Plug a =10b into the first equation and solve for the value of b:
a - b = 90
10b - b = 90
9b = 90
b = 10
3) Using b = 10, plug it back into one of the equations to find the value of a. I'll plug it back into the first equation:
a - b = 90
a - 10 = 90
a = 100
-------
Answer: The numbers are 100 and 10</span>