Let;
A(-8,6) B(6,6) C(6, -4) D(-8, -4)
Let's find the length AB
x₁= -8 y₁=6 x₂=6 y₂=6
We will use the distance formula;
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
![=\sqrt[]{(6+8)^2+(6-6)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%286%2B8%29%5E2%2B%286-6%29%5E2%7D)
![=\sqrt[]{14^2+0}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B14%5E2%2B0%7D)

Next, we will find the width BC
B(6,6) C(6, -4)
x₁= 6 y₁=6 x₂=6 y₂=-4
substitute into the distance formula;
![d=\sqrt[]{(6-6)^2+(-4-6)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%286-6%29%5E2%2B%28-4-6%29%5E2%7D)
![=\sqrt[]{(-10)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%28-10%29%5E2%7D)
![=\sqrt[]{100}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B100%7D)

Area = l x w
= 14 x 10
= 140 square units
Answer:
The answer to your question is: Yes, it is a solution
Step-by-step explanation:
Point (-2, 3)
Line: y = 2x + 7
Process, replace the point in the line
3 = 2(-2) + 7
3 = -4 + 7
3 = 3
As we got that 3 equals 3, then the point given is a solution of the equation.
Answer:
(2.25 , 0.75)
Step-by-step explanation:
solution is where the graphs intersect each other
3/4 = - x + 3
-x = 3/4 -3 = -2 1/4
x =2 1/4
Answer:
1a = 8 cu. in.
1b = 48 cu. yd.
1c = 15 cu. ft.
2a. 36 cu. yd.
2b = 126 cu. ft.
2c = 90 cu. ft.
3a = 112 cu. in.
3b = 60 cu. yd.
3c = 189 cu. ft.
Step-by-step explanation:
Answer:
Step-by-step explanation:
What do you mean?