1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
3 years ago
9

If: A + B = 8 [] C - A = 6 [] A + C = 13 [] then A=______ B=_______C=_______ (Hint:A,B, and C are not whole numbers!)

Mathematics
1 answer:
Komok [63]3 years ago
7 0

Answer:

A=3.5

B=4.5

C=9.5

Step-by-step explanation:

You can solve A and C with the last two equations through trial and error

then you plug in the solved A into the first equation to solve for B

You might be interested in
The pairs that equal to 4x-y=10
Tcecarenko [31]
You can work it out by using trial and error

so you get

x=3 , y=2
6 0
3 years ago
Draw a pair of adjacent supplementary angles so that one has a measure of 15 degrees
Nat2105 [25]

Answer:

the best way to to do this would be to use a protractor, if you don't have one you would have to guess on the 15 degrees, but it would be a very small angle

4 0
2 years ago
Help me pleazzzzzzzzeeeeeee
uranmaximum [27]
I believe it would be the second option....
6 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
What is the slope of the line?
sineoko [7]

Answer:

3/4

Step-by-step explanation:

You can do this two different ways. Both include picking two points where the line crosses a corner. I'm using (0,-1) and (4,2). Now here you can either use

Slope=\frac{Rise}{Run}

or \frac{y2-y1}{x2-x1}  

If you use the first one start at point (0,-1) and go to point (4,2) and count how many it goes up (rise) and then put that over how many it goes to the right (run).

If you use the second one then plug in the numbers.

y2=second y point

y1=first y point

x2=second x point

x1=first x point

\frac{2-(-1)}{4-0}   Now just solve.

\frac{3}{4}

4 0
3 years ago
Other questions:
  • What goes into the square root of 96?
    12·2 answers
  • 27 divided by (3+6) times 5 -12
    13·2 answers
  • X + 2/5 = 6. Solve for x.
    5·1 answer
  • Identify the independent and dependent variables.
    5·1 answer
  • Justin is 2 years older than one-third Marissa's age Amy is 4 years older than two times Justin's age then find Justin's age and
    8·2 answers
  • HELP
    15·1 answer
  • Im not too sure about this one could i get some help with it?
    5·1 answer
  • How many ounces of 50% alcohol solution must be mixed with 80 ounces of a 20% alcohol solution to make a 40% alcohol solution?
    10·1 answer
  • PLS HELP ASAP PLSSS IT DETECTS IF ITS RIGHT OR WRONG HELPPP
    7·1 answer
  • 13. A counterexample
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!