Answer:
Cos A=5/13
we have
Cos² A=
25/169=1-Sin²A
sin²A=1-25/169
sin²A=144/169
Sin A=
again
Tan B=4/3
P/b=4/3
p=4
b=3
h=
Now
Sin B=p/h=4/5
in IV quadrant sin angle is negative so
Sin B=-4/5
CosB=b/h=3/5
Now
<u>S</u><u>i</u><u>n</u><u>(</u><u>A</u><u>+</u><u>B</u><u>)</u><u>:</u><u>s</u><u>i</u><u>n</u><u>A</u><u>c</u><u>o</u><u>s</u><u>B</u><u>+</u><u>C</u><u>o</u><u>s</u><u>A</u><u>s</u><u>i</u><u>n</u><u>B</u>
<u>n</u><u>o</u><u>w</u><u> </u>
<u>substitute</u><u> </u><u>value</u>
<u>Sin(A+B):</u>12/13*3/5+5/13*(-4/5)=36/65-4/13
<u>=</u><u>1</u><u>6</u><u>/</u><u>6</u><u>5</u><u> </u><u>i</u><u>s</u><u> </u><u>a</u><u> </u><u>required</u><u> </u><u>answer</u>
1) Given: ds / dt = 3t^2 / 2s
2) Separate variables: 2s ds = 3t^2 dt
3) Integrate both sides:
∫ 2s ds = ∫ 3t^2 dt
s^2 + constant = t^3 + constant
=> s^2 = t^3 + constant
=> s = √ (t^3 + constant)
Answer: option B.
$8.58 will be your answer
So, this is the answers you get from plugging in x = (7 through 10)
x = 7 ... 24
x = 8 ... 36
x = 9 ... 50
x = 10 ... 66
Then you get the rate of changes...
66 - 50 = 16
50 - 36 = 14
36 - 24 = 12
So the average of 16, 14 and 12 (those values added together and then that total divided by the number of values, which is 3) is 14
The average rate of change is 14