Length is the up and down while area is the inside
Answer:
The sampling distribution of the sample mean of size 30 will be approximately normal with mean 15 and standard deviation 2.19.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For the population, we have that:
Mean = 15
Standard deviaiton = 12
Sample of 30
By the Central Limit Theorem
Mean 15
Standard deviation 
Approximately normal
The sampling distribution of the sample mean of size 30 will be approximately normal with mean 15 and standard deviation 2.19.
The first thing we are going to do to graph our equation is solve them for

:
For our first equation:



For our second equation:


Now, we just need to use the graphing utility to graph our equations:


We can conclude that the graph of the equations is: