The present age of mother and her daughter respectively are; 40 and 10 years respectively.
<h3>How to Solve Algebra Word Problems?</h3>
Let x and y be the present age of mother and her daughter respectively.
Therefore;
x + y = 50
x = 50 − y .....(1)
After 20 years, mother's age will be twice her daughter's age at the time. Thus;
x + 20 = 2(y + 20)
x − 2y = 20 .....(2)
Plugging eq 1 into eq 2 gives us;
50 − y − 2y = 20
3y = 30
y = 10
Thus;
x = 50 − 10
x = 40
Thus, the present age of mother and her daughter is 40 and 10 years respectively.
Translation of the question into English is;
The sum of the present ages of mother and her daughter is 50 years. After 20 years, mother's age will be twice her daughter's age at the time. Find their present ages.
Read more about Algebra Word Problems at; brainly.com/question/21405634
#SPJ1
Answer: The answer is 300 gallons.
Step-by-step explanation: Riemann sum is a method of calculating the total area under a curve on a graph, which is also known as Integral.
To calculate that area, we divide it into a number of rectangles with one point touching the curve. The curve has a closed interval [a,b] that can be subdivided into n subintervals, each having a width of Δ
= 
If a function is defined on the closed interval [a,b] and
is any point in [
,
], then a Riemann Sum is defined as ∑f(
)Δ
.
For this question:
Δ
=
= 1.4
Now, we have to find s(t) for each valor on the interval:
s(t) = 0.29
- t +25
s(0) = 25
s(1) = 24.29
s(2) = 24.16
s(3) = 24.61
s(4) = 25.64
s(5) = 27.25
s(6) = 29.44
s(7) = 32.21
Now, using the formula:
∑f(
)Δ
= 1.4(25+24.29+24.16+24.61+25.64+29.44+32.21)
∑f(
)Δ
= 1.4(212.6)
∑f(
)Δ
≅ 300
With Riemann Sum, it is estimated the total country's per capita sales of bottled water is 300 gallons.
Answer: Volume = 48
Step-by-step explanation:
V = L * W * H
V = 4 * 6 * 2
V = 48