Answer:
31
Step-by-step explanation:
From the expression
F(n + 1) = F(n) -3
>> f(n+1)-f(n) = -3
f(n) = f(n+1) + 3
f(4)- f(3) = -3
f(4) + 3 = f(3)
22 + 3 = 25 = f(3)
Similarly ; f(2) = f(3) + 3 = 25 + 3 = 28
f(1)= f(2) + 3 = 28 + 3 = 31
Answer:
121 cm
Step-by-step explanation:
12x13=156
7x5= - 35
________
121
Answer:
462 ways
Step-by-step explanation:
The formula to use in solving this problem is given as the Combination formula
The Combination formula is given as
C(n , r) = nCr = n!/r! (n - r)!
We are told that a food bakery has 12 pies unsold at the end of the day which they intend to share to 6 food banks
n = 12, r = 6
In order to ensure that at least 1 food bank gets 1 pie, we have:
n - 1 = 12 - 1 = 11
r - 1 = 6 - 1 = 5
Hence,
C(11, 5) = 11C5
= 11!/ 5! ×(11 - 5)!
= 11!/5! × 6!
= (11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1)/ (5 × 4 × 3 × 2 × 1) ×( 6 × 5 × 4 × 3 × 2 × 1)
= 462 ways
Answer: A translation 5 units down followed by a 180-degree counterclockwise rotation about the origin .
Step-by-step explanation:
From the given figure, the coordinates of ΔABC are A(-3,4), B(-3,1), C(-2,1) and the coordinates of ΔA'B'C' are A'(3,1), B'(3,4), C'(2,4).
When, a translation of 5 units down is applied to ΔABC, the coordinates of the image will be
Then applying 180° counterclockwise rotation about the origin, the coordinates of the image will be :-
which are the coordinates of ΔA'B'C'.
Hence, the set of transformations is performed on triangle ABC to form triangle A’B’C’ is " A translation 5 units down followed by a 180-degree counterclockwise rotation about the origin ".
Answer:
Step-by-step segment dc bisects segment ab, then point d is equidistant from points a and b because a point on a perpendicular bisector is equidistant from the endpoints of the segment it intersects. if segment dc bisects segment ab, then point d is equidistant from points a and b because congruent parts of congruent triangles are congruent. if segment ad bisects segment ab, then point d is equidistant from points a and b because a point on a perpendicular bisector is equidistant from: