1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
6

1. A = {1,2} B {3,4,5,6} then n(A)+n(B) = ?

Mathematics
2 answers:
Vladimir [108]3 years ago
5 0

Answer:

25

equal to

0

A null set is a set which has no elements in it. So, the cardinal number of a null set is zero.

Lubov Fominskaja [6]3 years ago
3 0

<u>Explanation</u><u>:</u><u>-</u>

★(i).

A = { 1,2}

⇛ n (A ) = 2

B = { 3,4,5,6}

⇛ n (B) = 4

n(A)+n(B) = 2+4 = 6

★(ii).

The symbol ⇛ means Implies

★(iii).

A = Phi = {}

B = phi = {}

AUB = { } U { } = { }

AUB = phi = { }

(iv).

AUB = BUA is called Commutative law in sets uner union .

★(v).

Null set = Void set = Empty set = { }

Number of elements in the empty set = 0

⇛ Cardinal number of null set is zero (0)

★(vi). If AUB = B then B is the super set and A is the sub set of B

★(vii). A = { 1,2,3,4}

B = {2,4,6,8}

A-B = {1,2,3,4} - { 2,4,6,8}

=> A-B = { 1,3}

★(viii). n(AUB) = 8

n(A) = 6

n(B) = 4

We know that

n(AnB) = n(A)+n(B)-n(AUB)

⇛ n(AnB) = 6+4-8

⇛n(AnB) = 10-8

⇛ n(AnB) = 2

or n(AUB)+n(AnB) = n(A)+n(B)

⇛ 8+ n(AnB) = 6+4

⇛ 8+ n(AnB) =10

⇛ n(AnB) = 10-8

⇛ n(AnB) = 2

Therefore, n(AnB) = 2

You might be interested in
What is the value of 5(y+3)-3x2 when x=4 and y=2? <br> A. –23 <br> B. –10 <br> C. 10 <br> D. 23
pentagon [3]

Answer:

A !

Step-by-step explanation:

Substitute the value of the variable into the expression and simplify.

Hope this helps!

                                                   -Lei

3 0
3 years ago
Read 2 more answers
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
How can -6.75+(10.25) be expressed as the sum of its integer and decimal parts
Bess [88]

Answer:

4 + - 0.50 = 3.50

Step-by-step explanation:

-6 +10 = 4

-0.75 + 0.25 = - 0.50

7 0
3 years ago
Paul's basketball coach decides that he will play only the first three quarters of every game this season. If he starts
igomit [66]

Answer:

im thinking the answer is 3/4 x 20

6 0
3 years ago
Read 2 more answers
F(1) = 0<br> f(n) = f(n-1)+2<br> Find an explicit formula for f(n).<br> f(n) =
Anna35 [415]
The answer is if f is 1
3 0
3 years ago
Other questions:
  • Write 3.050904 in expanded form in two ways.
    9·1 answer
  • How do you find percent
    9·2 answers
  • Help I'm stuck !!!!!!!!!
    11·2 answers
  • NEED MAJOR HELP WITH HW! ps: will make brainliest!
    14·1 answer
  • (a) Use the fundamental theorem of algebra to determine the number of roots for 2x^2+4x+7
    6·1 answer
  • 4 roommates share the cost of $108 of the electric bill evenly. What is the fraction to represent the division and classify each
    9·1 answer
  • Here are the times (in minutes) that six students need to finish a quiz: 10,14,15,15,14,10
    6·1 answer
  • Find the slope of each line<br> Y = 5 x +5<br> а<br> im so sorry im supper dumb:,(
    5·1 answer
  • James bought 257 pieces of candy . if 37% of the candy was eaten . how much pieces were ate ?
    10·1 answer
  • What is the square root of 45?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!