Step-by-step explanation:
∫₋₂² (f(x) + 6) dx
Split the integral:
∫₋₂² f(x) dx + ∫₋₂² 6 dx
Graphically, if f(-x) = -f(x), then ∫₋₂² f(x) dx = 0. But we can also show this algebraically.
Split the first integral:
∫₋₂⁰ f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
Using substitution, write the first integral in terms of -x.
∫₂⁰ f(-x) d(-x) + ∫₀² f(x) dx + ∫₋₂² 6 dx
-∫₂⁰ f(-x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
Flip the limits and multiply by -1.
∫₀² f(-x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
Rewrite f(-x) as -f(x).
∫₀² -f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
-∫₀² f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
The integrals cancel out:
∫₋₂² 6 dx
Evaluating:
6x |₋₂²
6 (2 − (-2))
24
The correct answer is 10.
In order to evaluate any composite function, you need to first put the value in for the inside function. In this case f(x) is on the inside along with the number 3. So, we input 3 in for x in f(x).
f(x) = 2x + 1
f(3) = 2(3) + 1
f(3) = 6 + 1
f(3) = 7
Now that we have the value of f(3), we can stick the answer in for the outside function, which is g(x).
g(x) = (3x - 1)/2
g(7) = (3(7) - 1)/ 2
g(7) = (21 - 1)/2
g(7) = 20/2
g(f(3)) = 10
7 hours and 20 min, hope this helps mark me the brainliest
<em>Answer:</em>
<em>There would be 173,535 lionfish after 6 years.</em>
<em>Step-by-step explanation:</em>
<em>Since lionfish are considered an invasive species, with an annual growth rate of 67%, ya scientist estimates there are 8,000 lionfish in a certain bay after the first year, A) to write the explicit equation for f (n) that represents the number of lionfish in the bay after n years; B) determine how many lionfish will be in the bay after 6 years; and C) if scientists remove 1,200 fish per year from the bay after the first year, determine what is the recursive equation for f (n); the following calculations must be performed:</em>
<em></em>
<em>A)</em>
<em>8000 x 1.67 ^ n = f </em>
<em>B)</em>
<em>8000 x 1.67 ^ 6 = X</em>
<em>8000 x 21.691961596369 = X</em>
<em>173,535.692770952 = X </em>
<em>C)</em>
<em>(8000 - 1200 x 1 ^ n) x 1.67 ^ n = f</em>
<em>Therefore, there would be 173,535 lionfish after 6 years.</em>