N2 stands for nitrogen.
this compound also includes the exact mass.
If you have any other questions please contact me here on Brainly.com and i will be happy to help.
please note- I didn't quite understand the question fully.
-Diane
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ
Answer:
will this help ?
Explanation:
(108Hs) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 265Hs in 1984. There are 12 known isotopes from 263Hs to 277Hs and 1–4 isomers. The most stable isotope of hassium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The confidence interval of half-life of 269Hs corresponding to one standard deviation (the interval is ~68.3% likely to contain the actual value) is 16 ± 6 seconds, whereas that of 270Hs is 9 ± 4 seconds. It is also possible that 277mHs is more stable than both of these, with its half-life likely being 110 ± 70 seconds, but only one event of decay of this isotope has been registered as of 2016.[1][2].
The answers are true, true, false, true, and false.
Explanation:
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons