Answer:

Explanation:
Hello.
In this case, we can solve this problem by applying the Boyle's law which allows us to understand the pressure-volume behavior as a directly proportional relationship:

In such away, knowing the both the initial pressure and volume and the final volume, we can compute the final pressure as shown below:

Consider that the given initial pressure is also equal to Pa:

Which stands for a pressure increase when volume decreases.
Regards.
10.0gNaCl/2.0Lsolution= 5.0g/L
However <em>trans</em>-2-Butene does not give a characteristic peak in 1620-1680 cm⁻¹ region but still the presence of carbon double bond carbon can be detected by detecting following peaks in IR Spectrum.
1) 3010-3100 cm⁻¹:
As in trans-2-Butene a hydrogen atoms ate attached to sp² hybridized carbon, therefore the stretching of =C-H (C-H) bond will give a peak of medium intensity in the range of 3010-3100 cm⁻¹.
2) 675-1000 cm⁻¹:
Another peak which is given by the bending of =C-H (C-H) bond with strong intensity will appear in the range of 675-1000 cm⁻¹.
Answer:
grams of solution = 551.98 g
Explanation:
Given data:
Percentage of solution = 32.9
Mass of solute = 181.6 g
Grams of solvent = ?
Solution:
Formula:
% = [grams of solute / grams of solution] × 100
Now we will put the values in formula.
32.9 = [ 181.6 g / grams of solution] × 100
grams of solution = 181.6 g × 100 / 32.9
grams of solution = 18160 g /32.9
grams of solution = 551.98 g