Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
Answer: its the first one buster
it will expand as water moves into it.
Answer:
6.66 mol
Explanation:
(atm x L) ÷ (0.0821 x K)
(0.875 x 250) ÷ (0.0821 x 400)
=6.66108
Answer:
0.29 mol/L
Explanation:
Its density is 1.029 g/ml so in a liter (1000 mL) there is 1029 g of solution, but only 5% is dextrose.
0.05x1029=51.45
So in a liter of D5W solution there is 51.45 g of dextrose.
Dextrose molar mass iss 180.156 g/mol, so in 51.45 g of dextrose there is
51.45/180.156=0.29 mol
In one liter of solution there is 0.29 mol of dextrose, so the molarity of such solution is 0.29 mol/L.