![\bf y=r(x)=\sqrt[3]{x}\quad x= \begin{cases} -2.197\\ -1.331\\ 0\\ 1.331\\ 2.197\\ 3.375\\ 4.913 \end{cases}\implies y= \begin{cases} \sqrt[3]{-2.197}\\ \sqrt[3]{-1.331}\\ \sqrt[3]{0}\\ \sqrt[3]{1.331}\\ \sqrt[3]{2.197}\\ \sqrt[3]{3.375}\\ \sqrt[3]{4.913} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20y%3Dr%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%5Cquad%20x%3D%0A%5Cbegin%7Bcases%7D%0A-2.197%5C%5C%0A-1.331%5C%5C%0A0%5C%5C%0A1.331%5C%5C%0A2.197%5C%5C%0A3.375%5C%5C%0A4.913%0A%5Cend%7Bcases%7D%5Cimplies%20y%3D%0A%5Cbegin%7Bcases%7D%0A%5Csqrt%5B3%5D%7B-2.197%7D%5C%5C%0A%5Csqrt%5B3%5D%7B-1.331%7D%5C%5C%0A%5Csqrt%5B3%5D%7B0%7D%5C%5C%0A%5Csqrt%5B3%5D%7B1.331%7D%5C%5C%0A%5Csqrt%5B3%5D%7B2.197%7D%5C%5C%0A%5Csqrt%5B3%5D%7B3.375%7D%5C%5C%0A%5Csqrt%5B3%5D%7B4.913%7D%0A%5Cend%7Bcases%7D)
so.. .get the pair and plot them then, all you need is your calculator to get the cubic root of the provided value.
Step-by-step explanation:
the answer is xxl in roman number or 21
The general form of the quadratic equation is :
![ax^2+bx+c=0](https://tex.z-dn.net/?f=ax%5E2%2Bbx%2Bc%3D0)
The discriminant is :
![D=b^2-4\cdot a\cdot c](https://tex.z-dn.net/?f=D%3Db%5E2-4%5Ccdot%20a%5Ccdot%20c)
And the general solution is :
![x=\frac{-b\pm\sqrt[]{D}}{2\cdot a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7BD%7D%7D%7B2%5Ccdot%20a%7D)
So, there are 3 situations for D
1. D = 0
So, the roots of a quadratic equation are two similar roots
2. D > 0
so, roots of a quadratic equation are two different roots
3. D < 0
so, roots of a quadratic equation are not real, two comlex roots
Answer:
The lines moves lower.
Step-by-step explanation:
The steepness of a line is related to the slope, m.
b is the y-intercept, not the slope.
b is where the line intersects the y-axis.
Changing b changes the vertical position of the line.
Answer: The lines moves lower.
Answer:
f(4) = -4
Step-by-step explanation:
f(x) = 4x - 20
Let x= 4
f(4) = 4*4 - 20
Multiply first
= 16 -20
Then subtract
= -4