Answer:
BC < CE < BE < ED < BD
Step-by-step explanation:
In the triangle BCE,
m∠BEC + m∠BCE + m∠CBE = 180°
m∠BEC + 81° + 54° = 180°
m∠BEC = 180 - 135
m∠BEC = 45°
Order of the angles from least to greatest,
m∠BEC < m∠CBE > mBCE
Sides opposite to these sides will be in the same ratio,
BC < CE < BE ----------(1)
Now in ΔBED,
m∠BEC + m∠BED = 180°
m∠BED = 180 - 45
= 135°
Now, m∠BDE + m∠BED + DBE = 180°
11° + 135°+ m∠DBE = 180°
m∠DBE = 180 - 146
= 34°
Order of the angles from least to greatest will be,
∠BDE < ∠DBE < ∠BED
Sides opposite to these angles will be in the same order.
BE < ED < BD ----------(2)
From relation (1) and (2),
BC < CE < BE < ED < BD
Answer:
1. 0.6
2. 0.25
Step-by-step explanation:
because math
A+30 = 60
a = 30
a + 2b = 60
30+2b = 60
2b = 30
b = 15
5b - 5c = 60
5(15) - 5c = 60
5c = 15
c = 3
10c + d = 60
10(3) + d = 60
30 + d = 60
d = 30
2d + 6e = 180 - 60
2(30) + 6e = 120
6e = 60
e = 10
4f + 4e = 120
4f + 4(10) = 120
4f = 80
f = 20