Answer:
BRUH I DONT KNOW
Step-by-s
4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) 4(5x−3)−3(4x−7) DO ALL OF THAT TO FIND THE ANSWER
There are 30 days in June and only three of those days are multiples of 8 so you have the probability of 3 out of 30.
The <em>echo</em> number 20222022202220222022 is the <em>perfect</em> square of 4496890281.
<h3>What echo number is a perfect square</h3>
An <em>echo</em> number has a <em>perfect</em> square if its square root is also a <em>natural</em> number. After some iterations we found that <em>echo</em> number 20222022202220222022 is a <em>perfect</em> square:

The <em>echo</em> number 20222022202220222022 is the <em>perfect</em> square of 4496890281. 
To learn more on natural numbers, we kindly invite to check this verified question: brainly.com/question/17429689
1/9 = 2/18 = 3/27 = 4/36 = 5/45 = ... = n/(9n) for any n