1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GaryK [48]
2 years ago
6

Apply the order of operations to simplify each expression.

Mathematics
2 answers:
Nuetrik [128]2 years ago
7 0

Answer:

your right it is 12 great job!

Step-by-step explanation:

r-ruslan [8.4K]2 years ago
7 0

<em><u>the ans is 4</u></em>

ANS WITH EXPLANATION :

  • 2 × 2 × 2 × 2 = 16
  • 16 - 8 = 8
  • 8 × 2 = 16
  • 16 ÷ 4 = 4

<h3>hope it helps..✔</h3>
You might be interested in
Simplify for x. (10-5 2/3)×(-2)+x=8 2/3​
polet [3.4K]

Answer:

16/37 I just did this... answer mines pls

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
What is h(-4) for h(x) =(x-2)^2 +3x
PSYCHO15rus [73]

(- 4 - 2)^{2}  + 3( - 4) \\  = ( - 6)^{2}  + ( - 12) \\  = 36 - 12 \\  = 24
The answer is 24
7 0
2 years ago
What are the values of f(x) = 9^x when x= -2? <br><br> a) 1/81<br> b) 81<br> c) 1/18<br> d) 18
Novosadov [1.4K]

Answer:

(a)

Step-by-step explanation:

using the rule of exponents

• a^{-m} ⇔ \frac{1}{a^{m} }, hence

9^{-2} = \frac{1}{9^{2} } = \frac{1}{81} → (a)


4 0
2 years ago
Read 2 more answers
Please view this imagine &amp; help meee:(
EleoNora [17]

Answer:

20: 9t+12

21: 18x

22: 105x+9

24: 156r

25: 3x+11

26: 25.2x

28: 56a

29: 1.5n

30: 13q

Step-by-step explanation:

hope this helped

brainliest please

6 0
3 years ago
Other questions:
  • How do you write two hundred and three thousandths in number form
    12·1 answer
  • Francine uses 2/3 cup of pineapple juice for every 1/3 cup of orange juice to make a smoothie. Enter the number of cups of pinea
    14·1 answer
  • Cece works at a dress shop and needs to calculate the discounts for dresses on sale using the formula d=(p−c)÷2, where d is the
    9·1 answer
  • Your food bill comes to $68.26. If the tax rate is 7%, calculate the amount of tax your family will pay.
    8·2 answers
  • Identify the prime factorization for the given number
    5·1 answer
  • How many Solutions are there to the question below
    11·2 answers
  • Solve the inequality
    13·1 answer
  • When you have two shapes to compare on a coordinate plane, you can determine the scale factor, knowing that the transformation w
    6·1 answer
  • Tracy can jump rope 26 times in<br> 1 minute. How many times can<br> she jump rope in 90 seconds?
    14·1 answer
  • Answer number 11 please. Thank you.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!