Answer:
T = 1.766(M-m) Nm where M and m are the 2 masses of the objects
Explanation:
Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.
Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m
T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm
Answer:
A) The speed of the water must be 8.30 m/s.
B) Total kinetic energy created by this maneuver is 70.12 Joules.
Explanation:
A) Mass of squid with water = 6.50 kg
Mass of water in squid cavuty = 1.55 kg
Mass of squid = 
Velocity achieved by squid = 
Momentum gained by squid = 
Mass of water = 
Velocity by which water was released by squid = 
Momentum gained by water but in opposite direction = 
P = P'


B) Kinetic energy does the squid create by this maneuver:
Kinetic energy of squid = K.E =
Kinetic energy of water = K.E' = 
Total kinetic energy created by this maneuver:


The benefit's of increased physical fitness is better health, more pleasing appearance to some, stronger muscles and the reduction of fat.
In zero order reactions the rate of reaction is independent of reactant concentrations. That is the rate of the reaction does not vary with increasing nor decreasing reactants concentrations. On the other hand, first order reaction are reactions in which the rate of reaction is directly proportional to the concentration of the reacting substance (reactants). In this case, i believe the rate of reaction will triple( increase by a factor of 3)