Answer:
Table C
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
Find the value of the constant of proportionality in each table
Table A
For
------>
For
------>
This table has different values of k
therefore
the table A does not represent a proportional relationship
Table B
For
------>
For
------>
For
------>
This table has different values of k
therefore
the table B does not represent a proportional relationship
Table C
For
------>
For
------>
For
------>
For
------>
This table has the same value of k
therefore
the table C represent a proportional relationship
Table D
For
------>
For
------>
For
------>
For
------>
This table has different values of k
therefore
the table D does not represent a proportional relationship
The net cannot be folded to form a pyramid because the faces that are not a base are not all triangles
If you fold this net up, you will get a triangular prism, NOT A PYRAMID.
A pyramid can have ANY polygon as its base, as long as all the other rest of the shapes are triangles.
Depending on the base, the number of triangles in a net of a pyramid must match the number of sides its particular base has.
For example, if you have a square pyramid turned into a net:
The base is a square (4 sides)
There should be 4 triangles on each side.
Because a pyramid is where all the triangles must meet up at a point.
Hope this helps!
Parameterize S by the vector function

with 0 ≤ u ≤ π/2 and 0 ≤ v ≤ π/2.
Compute the outward-pointing normal vector to S :

The integral of the field over S is then



Answer: See below
Step-by-step explanation:
number of yellow pieces/number of blue pieces
= 14/24
= 7/12 --> 7 to 12 --> 7:12
The ratio that represents the number of yellow pieces to the total number of pieces is part-to-whole
number of yellow pieces/total number of pieces
= 14/100
= 7/50 --> 7 to 50 --> 7:50
The ratio that represents the number of blue pieces to the total number of pieces is part-to-whole
= 24/100
= 6/25 --> 6 to 25 --> 6:25