9514 1404 393
Answer:
maximum difference is 38 at x = -3
Step-by-step explanation:
This is nicely solved by a graphing calculator, which can plot the difference between the functions. The attached shows the maximum difference on the given interval is 38 at x = -3.
__
Ordinarily, the distance between curves is measured vertically. Here that means you're interested in finding the stationary points of the difference between the functions, along with that difference at the ends of the interval. The maximum difference magnitude is what you're interested in.
h(x) = g(x) -f(x) = (2x³ +5x² -15x) -(x³ +3x² -2) = x³ +2x² -15x +2
Then the derivative is ...
h'(x) = 3x² +4x -15 = (x +3)(3x -5)
This has zeros (stationary points) at x = -3 and x = 5/3. The values of h(x) of concern are those at x=-5, -3, 5/3, 3. These are shown in the attached table.
The maximum difference between f(x) and g(x) is 38 at x = -3.
We have to divide 23 by 5.
23/5=4.6
B. Between 4 and 5, is correct.
When I factor[ 2cos (square) - 5cos -3], I get (2cos + 1)(cos - 3). 2cos + 1 = 0, 2cos = -1, cos = -0.5,. Using inv cos on calculator, I get 120 degree related angle.
Answer:
Angle 1: 168
Angle 2: 12
Explanation:
I did the math! basically, i did 168-156, and got 12. Then i added, 168+12, and got 180. So i know that both angles together make 180 degrees, which is the definition of supplementary angles.