1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
2 years ago
10

Solve similar triangles Solve for x x=?

Mathematics
1 answer:
lions [1.4K]2 years ago
6 0

Answer:

x/9 = 1/5

x = 9/5

You might be interested in
Choose Yes or No to tell whether the expressions are equivalent. 1. 4(5c + 3) and 9c + 7 yes or no 2. 10f – 10 and 2(8f – 5) yes
Juli2301 [7.4K]

Answer:

1) No

2) No

3)Yes

4)No

Step-by-step explanation:

Distributive property: a(b + c) =a*b + a*c

1) 4(5c + 3) = (4*5c) + 4*3

                  = 20c + 12

NO

2) 2(8f - 5) = (2*8f) - (2*5)

                 = 16f - 10

NO

3) 3(4g + 7) = (3*4g) + (3*7)

                  = 12g + 21

YES

4) 6(4j - 6) =(6 * 4j) - (6*6)

                = 24j - 36

NO

5 0
3 years ago
What is the supplementary angle to an angle that has 112 degrees?
olga55 [171]
Supplementary means they add up to 180°.
180-112= 68
The answer is 68°
7 0
3 years ago
Please Help! This is a trigonometry question.
liraira [26]
\large\begin{array}{l} \textsf{From the picture, we get}\\\\ \mathsf{tan\,\theta=\dfrac{2}{3}}\\\\ \mathsf{\dfrac{sin\,\theta}{cos\,\theta}=\dfrac{2}{3}}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\qquad\mathsf{(i)} \end{array}


\large\begin{array}{l} \textsf{Square both sides of \mathsf{(i)} above:}\\\\ \mathsf{(3\,sin\,\theta)^2=(2\,cos\,\theta)^2}\\\\ \mathsf{9\,sin^2\,\theta=4\,cos^2\,\theta}\qquad\quad\textsf{(but }\mathsf{cos^2\theta=1-sin^2\,\theta}\textsf{)}\\\\ \mathsf{9\,sin^2\,\theta=4\cdot (1-sin^2\,\theta)}\\\\ \mathsf{9\,sin^2\,\theta=4-4\,sin^2\,\theta}\\\\ \mathsf{9\,sin^2\,\theta+4\,sin^2\,\theta=4} \end{array}

\large\begin{array}{l} \mathsf{13\,sin^2\,\theta=4}\\\\ \mathsf{sin^2\,\theta=\dfrac{4}{13}}\\\\ \mathsf{sin\,\theta=\sqrt{\dfrac{4}{13}}}\\\\ \textsf{(we must take the positive square root, because }\theta \textsf{ is an}\\\textsf{acute angle, so its sine is positive)}\\\\ \mathsf{sin\,\theta=\dfrac{2}{\sqrt{13}}} \end{array}

________


\large\begin{array}{l} \textsf{From (i), we find the value of }\mathsf{cos\,\theta:}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{2}\,sin\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\diagup\!\!\!\! 2}\cdot \dfrac{\diagup\!\!\!\! 2}{\sqrt{13}}}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\sqrt{13}}}\\\\ \end{array}

________


\large\begin{array}{l} \textsf{Since sine and cosecant functions are reciprocal, we have}\\\\ \mathsf{sin\,2\theta\cdot csc\,2\theta=1}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{sin\,2\theta}\qquad\quad\textsf{(but }}\mathsf{sin\,2\theta=2\,sin\,\theta\,cos\,\theta}\textsf{)}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\,sin\,\theta\,cos\,\theta}}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\cdot \frac{2}{\sqrt{13}}\cdot \frac{3}{\sqrt{13}}}} \end{array}

\large\begin{array}{l} \mathsf{csc\,2\theta=\dfrac{~~~~1~~~~}{\frac{2\cdot 2\cdot 3}{(\sqrt{13})^2}}}\\\\ \mathsf{csc\,2\theta=\dfrac{~~1~~}{\frac{12}{13}}}\\\\ \boxed{\begin{array}{c}\mathsf{csc\,2\theta=\dfrac{13}{12}} \end{array}}\qquad\checkmark \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2150237


\large\textsf{I hope it helps.}


Tags: <em>trigonometry trig function cosecant csc double angle identity geometry</em>

</span>
8 0
3 years ago
2. The electrical resistance R of a wire varies inversely with the square of its diameter d. If a wire with a
Mariulka [41]

Answer:

0.225 \Omega =225 m\Omega

Step-by-step explanation:

We know (Ohm second law) that R= \frac{k}{d^2} where k inlcudes the rest of the parameters (material, lenght). In our situation we have k= 0.4\cdot9 \Omega mm^2. The moment the diameter becomes 8mm R becomes

R= {{0.4\cdot 9}\over{16}} \Omega = 0.225 \Omega

4 0
2 years ago
PERSON GETS 15 POINTZ PLZ HURRY The mean of the list n, n + 3, n+4, n+5, n+6, n+8, n+10, n + 12, n+15 is 11. What is the median?
7nadin3 [17]

Answer:

10

Step-by-step explanation:

To find the value of n we can write:

(n + n + 3 + n + 4 + n + 5 + n + 6 + n + 8 + n + 10 + n + 12 + n + 15) / 9 = 11

(9n + 63) / 9 = 11

9n + 63 = 99

9n = 36

n = 4

The median is n + 6 which is 4 + 6 = 10.

7 0
2 years ago
Read 2 more answers
Other questions:
  • Find the midpoint of the segment connecting the points (2,-7) and (-7,9).
    14·1 answer
  • How do you know which fraction is greater 0 and 1/2 explain
    11·1 answer
  • Expand and combine like terms. (7b^5-4b)(7b^5+4b)=
    11·1 answer
  • Find f(g(4)).<br> f(g(4)) =
    7·2 answers
  • What is the sum of 19
    11·1 answer
  • For which equation is x=0 NOT a solution?
    10·1 answer
  • Apply the distributive to a factor out the greatest common factor 64 + 40
    12·1 answer
  • Help with two step equations with fractions.........<br> 2/3x=6
    8·2 answers
  • Write the equation in standard form.<br><br> 8−5y=−2x
    11·1 answer
  • Just answer these 4questions! (: 13 points!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!