1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
15

Find the missing angles for each problem, given that lines a and b are parallel (step by step)

Mathematics
1 answer:
marshall27 [118]3 years ago
3 0

Answer:

1) 40°

2) 140°

3) 140°

5)40°

6)140°

7)140°

8)40°

Step-by-step explanation:

1 = 40 °        <em>  [Vertically Opposite angles are equal]</em>

8 = 40 °         <em>[Corresponding Angles are equal]</em>

5 = 8 = 40°  <em> [Corresponding Angles are equal]</em>

7 = 180° - 40° = 140°      <em>[Supplementary angles sum 180°]</em>

6 = 140°           <em> [Vertically Opposite angles are equal]</em>

2 = 140°            <em>[Corresponding Angles are equal]</em>

3 = 140 °          <em> [Vertically Opposite angles are equal]</em>

You might be interested in
Question is below thanks
vichka [17]

Answer:

33.51

Step-by-step explanation:

There's a formula using the value of the angle but I don't remember it so the most easy way is:

A circle has an angle of 360°

so our section has an angle of 60

and we know that 360=60*6

so the area of the circle we divide it by 6 and we get the area we want

A=\pi r^2\\\\A=\pi (8)^2\\\\A=64\pi

divide this by 6

A_1=A/6=64\pi/6\approx 33.51 units squared

5 0
3 years ago
Read 2 more answers
Graph The Line.<br> -2x+y= -6
loris [4]
0,6 !!

if this helps say thank you or make me the brainiest:)
3 0
3 years ago
Read 2 more answers
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
A human hair has a width of about 6.5 x 10-5 meter. What is this width written in standard notation?
kobusy [5.1K]

Answer:

The answer is C. 0.000065

Step-by-step explanation:

6 0
4 years ago
On a diagram of the arena, the car park's length is 15 cm. The scale is 1:100.
faltersainse [42]

If a diagram has a scale of 1:100, that means that the real thing is 100 times larger. To find how long the real thing is, that means that we need to multiply the length on the diagram by 100. 100 * 15 is 1500. But, that is 1,500 cm. To convert it into meters, we need to divide by 100. That's because there's 100 centimeters in every meter. 1500/100 is 15, which means that the actual length of the car park is 15 meters.

8 0
4 years ago
Other questions:
  • What's the equation of a line that passes through the x-intercept at 4 and the y-intercept at -2
    11·1 answer
  • /Short Wheels is a small home business that designs and builds skateboards. Its employees glue
    11·1 answer
  • 30 - 19r + 15 - 9r =<br> 25 points!
    7·2 answers
  • What is 23,009,040 in scientific notation
    14·1 answer
  • Write the decimal -0.43--- as a fraction in simplest form​
    7·2 answers
  • Gerald scored 15 points for his team for every 25 minutes he played in the season. If he played 200 minutes in the season, how m
    14·1 answer
  • i need to find the area of a rectangle using the formula A=b*h the height is 810 cm the base is 10 meters...i know i need to con
    13·1 answer
  • Need some assistiance.
    5·1 answer
  • Hello please help with this.
    14·1 answer
  • Which phase of the sdlc gathers business requirements?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!