2*l*w+2*l*h+2*w*h plug in then solve
B) -23 because a double negative is a positive so it’s -35 + 12 which is -23
Step-by-step explanation:
(x^4)^3=(x^3)^4 , true
=> x^(4×3) = x^(3×4) = x^12
13^4 x 13^7= (13^4)^7, false
13^(4+7) = 13^11
(13^4)^7 = 13^(4×7) = 13^28
y^5 x y^0/y^3=(y^2)^1 , true
y^5 x y^0/y^3 = y^(5+0-3) = y^2
(y^2)^1 = y^(2×1) = y^2
q^0 x q^5/q^2=(q^3)^2/q^3, true
q^0 x q^5/q^2= q^(0+5-2)= q^3
(q^3)^2/q^3 = q^(3×2-3) = q^3
The given sequence is
a₁, a₂, ...,

Because the given sequence is an arithmetic progression (AP), the equation satisfied is

where
d = the common difference.
The common difference may be determined as
d = a₂ - a₁
The common difference is the difference between successive terms, therefore
d = a₃ - a₂ = a₄ - a₃, and so on..
The sum of the first n terms is

Example:
For the arithmetic sequence
1,3,5, ...,
the common difference is d= 3 - 1 = 2.
The n-th term is

For example, the 10-term is
a₁₀ = 1 + (10-1)*2 = 19
Th sum of th first 10 terms is
S₁₀ = (10/2)*(1 + 19) = 100
Answer:
12.5 litres of Blue paint
Step-by-step explanation:
2+7+1=10
therefore;
10=64
2=??
cross-multiply
(2×64)÷10
answer= 12.4 liters or 12.5