Answer:
a. 1810mL
Explanation:
When conditions for a gas change under constant pressure (and the number of molecules doesn't change), it follows Charles' Law:
where the temperatures must be measured in Kelvin
To convert from Celsius to Kelvin, add 273, or use the equation: 
For this problem, one must also recall that standard temperature is 0°C (or 273K).
So,
, and
.

![\dfrac{(1532.7[mL])}{(273[K])}=\dfrac{V_2}{(322.4[K])}](https://tex.z-dn.net/?f=%5Cdfrac%7B%281532.7%5BmL%5D%29%7D%7B%28273%5BK%5D%29%7D%3D%5Cdfrac%7BV_2%7D%7B%28322.4%5BK%5D%29%7D)
![\dfrac{(1532.7[mL])}{(273[K\!\!\!\!\!{-}])}(322.4[K\!\!\!\!\!{-}] )=\dfrac{V_2}{(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})}(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})](https://tex.z-dn.net/?f=%5Cdfrac%7B%281532.7%5BmL%5D%29%7D%7B%28273%5BK%5C%21%5C%21%5C%21%5C%21%5C%21%7B-%7D%5D%29%7D%28322.4%5BK%5C%21%5C%21%5C%21%5C%21%5C%21%7B-%7D%5D%20%29%3D%5Cdfrac%7BV_2%7D%7B%28322.4%5BK%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B----%7D%29%7D%28322.4%5BK%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B----%7D%29)
![1810.04571428[mL]=V_2](https://tex.z-dn.net/?f=1810.04571428%5BmL%5D%3DV_2)
Adjusting for significant figures, this gives ![V_2=1810[mL]](https://tex.z-dn.net/?f=V_2%3D1810%5BmL%5D)
Not sure if this was a true or false but ok great job it is true. :)
Water Desalination Processes. Water desalination processes separate dissolved salts and other minerals from water. Feedwater sources may include brackish, seawater, wells, surface (rivers and streams), wastewater, and industrial feed and process waters. Membrane separation requires driving forces including pressure (applied and vapor),...
Hope I helped :)
The number of atoms of K that are in 235 g of the compound is
2.57 x10^24 atoms
calculation
Step 1: find the moles of K2S
= moles = mass/molar mass
= 235 g/110 g/mol= 2.136 moles
Step 2: multiply 2.136 moles by no. of K atoms in K2S
= 2.136 x2 = 4.272 moles
Step 3: use the Avogadro's law to determine number of K atoms
that is according to Avogadro's law 1 mole = 6.02 x 10^23 atoms
4.272 moles= ? atoms
by cross multiplication
= (4.272 moles x 6.02 x10^23 atoms) / 1 mole = 2.57 x10^24 atoms