Answer:
![f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.](https://tex.z-dn.net/?f=f%28v%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5C%209%5E3%20%5Cle%20v%20%5Cle%2010%5E3%7D%20%5Catop%20%7B0%2C%20elsewhere%7D%7D%20%5Cright.)
Step-by-step explanation:
Given
--- interval
Required
The probability density of the volume of the cube
The volume of a cube is:
![v = x^3](https://tex.z-dn.net/?f=v%20%3D%20x%5E3)
For a uniform distribution, we have:
![x \to U(a,b)](https://tex.z-dn.net/?f=x%20%5Cto%20U%28a%2Cb%29)
and
![f(x) = \left \{ {{\frac{1}{b-a}\ a \le x \le b} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7Bb-a%7D%5C%20a%20%5Cle%20x%20%5Cle%20b%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
implies that:
![(a,b) = (9,10)](https://tex.z-dn.net/?f=%28a%2Cb%29%20%3D%20%289%2C10%29)
So, we have:
![f(x) = \left \{ {{\frac{1}{10-9}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B10-9%7D%5C%209%20%5Cle%20x%20%5Cle%2010%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
Solve
![f(x) = \left \{ {{\frac{1}{1}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B1%7D%5C%209%20%5Cle%20x%20%5Cle%2010%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
![f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B1%5C%209%20%5Cle%20x%20%5Cle%2010%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
Recall that:
![v = x^3](https://tex.z-dn.net/?f=v%20%3D%20x%5E3)
Make x the subject
![x = v^\frac{1}{3}](https://tex.z-dn.net/?f=x%20%3D%20v%5E%5Cfrac%7B1%7D%7B3%7D)
So, the cumulative density is:
![F(x) = P(x < v^\frac{1}{3})](https://tex.z-dn.net/?f=F%28x%29%20%3D%20P%28x%20%3C%20v%5E%5Cfrac%7B1%7D%7B3%7D%29)
becomes
![f(x) = \left \{ {{1\ 9 \le x \le v^\frac{1}{3} - 9} \atop {0\ elsewhere}} \right.](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B1%5C%209%20%5Cle%20x%20%5Cle%20v%5E%5Cfrac%7B1%7D%7B3%7D%20-%209%7D%20%5Catop%20%7B0%5C%20elsewhere%7D%7D%20%5Cright.)
The CDF is:
![F(x) = \int\limits^{v^\frac{1}{3}}_9 1\ dx](https://tex.z-dn.net/?f=F%28x%29%20%3D%20%5Cint%5Climits%5E%7Bv%5E%5Cfrac%7B1%7D%7B3%7D%7D_9%201%5C%20%20dx)
Integrate
![F(x) = [v]\limits^{v^\frac{1}{3}}_9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20%5Bv%5D%5Climits%5E%7Bv%5E%5Cfrac%7B1%7D%7B3%7D%7D_9)
Expand
![F(x) = v^\frac{1}{3} - 9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20v%5E%5Cfrac%7B1%7D%7B3%7D%20-%209)
The density function of the volume F(v) is:
![F(v) = F'(x)](https://tex.z-dn.net/?f=F%28v%29%20%3D%20F%27%28x%29)
Differentiate F(x) to give:
![F(x) = v^\frac{1}{3} - 9](https://tex.z-dn.net/?f=F%28x%29%20%3D%20v%5E%5Cfrac%7B1%7D%7B3%7D%20-%209)
![F'(x) = \frac{1}{3}v^{\frac{1}{3}-1}](https://tex.z-dn.net/?f=F%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dv%5E%7B%5Cfrac%7B1%7D%7B3%7D-1%7D)
![F'(x) = \frac{1}{3}v^{-\frac{2}{3}}](https://tex.z-dn.net/?f=F%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D)
![F(v) = \frac{1}{3}v^{-\frac{2}{3}}](https://tex.z-dn.net/?f=F%28v%29%20%3D%20%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D)
So:
![f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.](https://tex.z-dn.net/?f=f%28v%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B1%7D%7B3%7Dv%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5C%209%5E3%20%5Cle%20v%20%5Cle%2010%5E3%7D%20%5Catop%20%7B0%2C%20elsewhere%7D%7D%20%5Cright.)
Answer:
720 degrees =
or 0.785 radians.
Step-by-step explanation:
Given:
The angle in degrees in given as 720°
We need to convert this to radians.
Now, we know that, the relation between degrees and radians is given as:
180 degree = π radians
Therefore, using unitary method, the value of 1 degree can be calculated.
∴ 1 degree = ![\frac{\pi}{180}\ radians](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B180%7D%5C%20radians)
Now, the value of 720 degrees can be calculated by multiplying the unit value and 720. So,
![720\ degrees=\frac{\pi}{180}\times 720\ radians\\\\ 720\ degrees =\frac{720\pi}{180}\\\\720\ degrees =\frac{\pi}{4}\ radians=0.785\ radians](https://tex.z-dn.net/?f=720%5C%20degrees%3D%5Cfrac%7B%5Cpi%7D%7B180%7D%5Ctimes%20720%5C%20radians%5C%5C%5C%5C%20720%5C%20degrees%20%3D%5Cfrac%7B720%5Cpi%7D%7B180%7D%5C%5C%5C%5C720%5C%20degrees%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%5C%20radians%3D0.785%5C%20radians)
Hence, the measure of 720 degrees in radians is
or 0.25π radians or 0.785 radians.
Answer:
2
Step-by-step explanation:
Answer:
P_max = 9.032 KN
Step-by-step explanation:
Given:
- Bar width and each side of bracket w = 70 mm
- Bar thickness and each side of bracket t = 20 mm
- Pin diameter d = 10 mm
- Average allowable bearing stress of (Bar and Bracket) T = 120 MPa
- Average allowable shear stress of pin S = 115 MPa
Find:
The maximum force P that the structure can support.
Solution:
- Bearing Stress in bar:
T = P / A
P = T*A
P = (120) * (0.07*0.02)
P = 168 KN
- Shear stress in pin:
S = P / A
P = S*A
P = (115)*pi*(0.01)^2 / 4
P = 9.032 KN
- Bearing Stress in each bracket:
T = P / 2*A
P = T*A*2
P = 2*(120) * (0.07*0.02)
P = 336 KN
- The maximum force P that this structure can support:
P_max = min (168 , 9.032 , 336)
P_max = 9.032 KN