By inspection, it's clear that the sequence must converge to

because

when

is arbitrarily large.
Now, for the limit as

to be equal to

is to say that for any

, there exists some

such that whenever

, it follows that

From this inequality, we get




As we're considering

, we can omit the first inequality.
We can then see that choosing

will guarantee the condition for the limit to exist. We take the ceiling (least integer larger than the given bound) just so that

.
Answer:
f(x) and g(x) are inverse functions
Step-by-step explanation:
In the two functions f(x) and g(x) if, f(g(x)) = g(f(x)) = x, then
f(x) and g(x) are inverse functions
Let us use this rule to solve the question
∵ f(x) = 3x²
∵ g(x) = 
→ Find f(g(x)) by substitute x in f(x) by g(x)
∴ f(g(x)) = 3(
)²
→ Cancel the square root with power 2
∴ f(g(x)) = 3(
)
→ Cancel the 3 up with the 3 down
∴ f(g(x)) = x
→ Find g(f(x)) by substitute x in g(x) by f(x)
∴ g(f(x)) = 
→ Cancel the 3 up with the 3 down
∴ g(f(x)) = 
→ Cancel the square root with power 2
∴ g(f(x)) = x
∵ f(g(x)) = g(f(x)) = x
→ By using the rule above
∴ f(x) and g(x) are inverse functions
Answer:
All real numbers.
Step-by-step explanation:
Since this is a quadratic function, that means the domain is all real numbers.
If you would like more help on math or other subjects for FREE, check out growthinyouth.org.
Answer:
b = 1
b = -1
a = 0
Step-by-step explanation:
Answer:
3/5 m^2 n^3
Step-by-step explanation:
√225 = 15
√625 = 25
√m^4 = m^2
√n^6 = n^3
Put it all together and you get 15/25 m^2 n^3
Simplify 15/25 to 3/5