Answer:
3x+2|=lpz(|−2x+4|)
Step-by-step explanation:
Answer:
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Begin with the right hand side:
R.H.S = cot θ =
L.H.S = sin θ cos θ
so, sin θ cos θ ≠ 
So, the equation is not a trigonometric identity.
=========================================================
<u>Anther solution:</u>
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Assume θ with a value and substitute with it.
Let θ = 45°
So, L.H.S = sin θ cos θ = sin 45° cos 45° = (1/√2) * (1/√2) = 1/2
R.H.S = cot θ = cot 45 = 1
So, L.H.S ≠ R.H.S
So, sin θ cos θ = cot θ is not a trigonometric identity.
Answer:
Quotient = 3
Step-by-step explanation:
We need to solve the given expression :

It can be done as follows :
As, 
So,

Hence, the required quotient is 3.
Volume = Area * height
= (pi/4)*D^2 * h
= (pi/4)*(40)^2 * 30
= 37,680 mm3
so, the answer is (a)