Answer: Differences in osmotic concentrations
Explanation: With solvent particles flowing into the cell, it means the concentration outside of the cell is higher and with initial volume less than 50%, then that within the cell is lower. This results in an osmotic gradient, allowing particles in areas of higher concentration (outside the cell) to flow into the cell, an area of lower concentration.
Explanation:
The polar nature of the membrane’s surface can attract polar molecules, where they can later be transported through various mechanisms. Also, the non-polar region of the membrane allows for the movement of small non-polar molecules across the membrane’s interior, while preventing the movement of polar molecules, thus maintaining the cell’s composition of solutes and other substances by limiting their movement.
Further explanation:
Lipids are composed of fatty acids which form the hydrophobic tail and glycerol which forms the hydrophilic head; glycerol is a 3-Carbon alcohol which is water soluble, while the fatty acid tail is a long chain hydrocarbon (hydrogens attached to a carbon backbone) with up to 36 carbons. Their polarity or arrangement can give these non-polar macromolecules hydrophilic and hydrophobic properties i.e. they are amphiphilic. Via diffusion, small water molecules can move across the phospholipid bilayer acts as a semi-permeable membrane into the extracellular fluid or the cytoplasm which are both hydrophilic and contain large concentrations of polar water molecules or other water-soluble compounds.
Similarly via osmosis, the water passes through the membrane due to the difference in osmotic pressure on either side of the phospholipid bilayer, this means that the water moves from regions of high osmotic pressure/concentration to regions of low pressure/ concentration to a steady state.
Transmembrane proteins are embedded within the membrane from the extracellular fluid to the cytoplasm, and are sometimes attached to glycoproteins (proteins attached to carbohydrates) which function as cell surface markers. Carrier proteins and channel proteins are the two major classes of membrane transport proteins; these allow large molecules called solutes (including essential biomolecules) to cross the membrane.
Learn more about membrane components at brainly.com/question/1971706
Learn more about plasma membrane transport at brainly.com/question/11410881
#LearnWithBrainly
Transcription is the first step, where a complementary strand of RNA is made,w which is modelled off the DNA.
This RNA called mRNA (messenger RNA) moves out of the nucleus to the ribosomes (sites of protein manufacture) where translation occurs. Translation is where amino acids are made to string together based off the code in the mRNA