1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
2 years ago
15

I have 5 hungry brothers eating 192 pieces of candy every minute, how many pieces of candy will they have eaten in an hour?

Mathematics
1 answer:
Irina18 [472]2 years ago
7 0

Answer:

11,520

Step-by-step explanation:

192×60

60 is the minute so

192×60=11520

You might be interested in
A United Nations report shows the mean family income for Mexican migrants to the United States is $27,000 per year. A FLOC (Farm
disa [49]

Answer:

We conclude that the mean family income for Mexican migrants to the United States is $27,000 per year and the provided information is consistent with the United Nations report.

Step-by-step explanation:

We are given that a United Nations report shows the mean family income for Mexican migrants to the United States is $27,000 per year.

A FLOC  evaluation of 25 Mexican family units reveals a mean to be $30,000 with a sample standard deviation of $10,000.

Let \mu = <em><u>true mean family income for Mexican migrants.</u></em>

So, Null Hypothesis, H_0 : \mu = $27,000     {means that the mean family income for Mexican migrants to the United States is $27,000 per year}

Alternate Hypothesis, H_A : \mu \neq $27,000     {means that the mean family income for Mexican migrants to the United States is different from $27,000 per year}

The test statistics that would be used here <u>One-sample t test statistics</u> as we don't know about the population standard deviation;

                          T.S. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean family income = $30,000

            s = sample standard deviation = $10,000

            n = sample of Mexican family = 25

So, <u><em>the test statistics</em></u>  =  \frac{30,000-27,000}{\frac{10,000}{\sqrt{25} } }  ~ t_2_4

                                     =  1.50

The value of t test statistics is 1.50.

Since, in the question we are not given the level of significance so we assume it to be 5%. <u>Now, at 5% significance level the t table gives critical values of -2.064 and 2.064 at 24 degree of freedom for two-tailed test.</u>

Since our test statistic lies within the range of critical values of t, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region due to which <u>we fail to reject our null hypothesis</u>.

Therefore, we conclude that the mean family income for Mexican migrants to the United States is $27,000 per year and the provided information is consistent with the United Nations report.

4 0
3 years ago
For an annual membership fee of $500
saul85 [17]

Answer:

may utak Ka gamiin mo daw po box city of our games are based on the future of our games

3 0
2 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
2 years ago
In triangle abc, cos A= -0.6. Find A and Tan A
Tresset [83]

Answer:

Part 1) A=126.87^o

Part 2) tan(A)=-\frac{4}{3}

Step-by-step explanation:

we have

cos(A)=-0.6

The cos(A) is negative, that means that the angle A in the triangle ABC is an obtuse angle and the value of the sin(A) is positive

The angle A lie on the II Quadrant

step 1

Find the measure of angle A

cos(A)=-0.6

using a calculator

A=cos^{-1}(-0.6)=126.87^o

step 2

Find the sin(A)

we know that

sin^2(A)+cos^2(A)=1

substitute the value of cos(A)

sin^2(A)+(-0.6)^2=1

sin^2(A)=1-0.36

sin^2(A)=0.64

sin(A)=0.8

step 3

Find tan(A)

we know that

tan(A)=\frac{sin(A)}{cos(A)}

substitute the values

tan(A)=\frac{0.8}{-0.6}

Simplify

tan(A)=-\frac{4}{3}

5 0
2 years ago
Which greek geometer founded a philosophical society that devoted itself to study of mathematics​
BlackZzzverrR [31]

Answer:

Pythagoras was the Greek geometer .

<em>Please mark me as the brainliest.</em>

8 0
1 year ago
Read 2 more answers
Other questions:
  • Economics and finance. some of the variables that affect the monthly payment of a new-car loan are the total amount borrowed, th
    10·1 answer
  • suzi walks 1.5 miles to school when she looks at the map is shoes the scale to be 1 cm=0.5 miles what is the distance between su
    10·1 answer
  • At an airport restaurant, 2 sodas and 4 hamburgers cost $12.00. An order of 4 sodas and 2 hamburgers costs $9.00. How much does
    11·2 answers
  • Company A had a loss of $255 in January. Company B had a profit of $162 in January. What was the difference between the profits
    14·1 answer
  • What is the opposite of |7|
    7·1 answer
  • The best fitting straight line for a data set of X-values plotted against y-values is
    14·1 answer
  • 20 POINTS!!!!!
    11·1 answer
  • Find the measure of the missing angle.​
    15·1 answer
  • Type the correct answer in the box. Use numerals instead of words.
    13·2 answers
  • The weight of an object on moon is 1/6 of its weight on Earth. If weight of an object on Earth is 18/5 kg, what would be its wei
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!