<span>use De Moivre's Theorem:
⁵√[243(cos 260° + i sin 260°)] = [243(cos 260° + i sin 260°)]^(1/5)
= 243^(1/5) (cos (260 / 5)° + i sin (260 / 5)°)
= 3 (cos 52° + i sin 52°)
z1 = 3 (cos 52° + i sin 52°) ←← so that's the first root
there are 5 roots so the angle between each root is 360/5 = 72°
then the other four roots are:
z2 = 3 (cos (52 + 72)° + i sin (52+ 72)°) = 3 (cos 124° + i sin 124°)
z3 = 3 (cos (124 + 72)° + i sin (124 + 72)°) = 3 (cos 196° + i sin 196°)
z4 = 3 (cos (196 + 72)² + i sin (196 + 72)°) = 3 (cos 268° + i sin 268°)
z5 = 3 (cos (268 + 72)° + i sin (268 + 72)°) = 3 (cos 340° + i sin 340°) </span>
Answer:
zero (0)
Step-by-step explanation:
-4^0=-1
-1+1=0
Answer:
8
Step-by-step explanation:
The formula to calculate the sum of interior angles of polygon is (n - 2)180
Where n represents number of sides
(n-2)180 = 1080 ------ Divide through by 180
(n-2)180/180 = 1080/180
n-2 = 6
n = 6+2
n = 8
50 tens
5000 thousands
50000 ten thousand
50 tens
5
Hope this helps