The electric potential between the two charges is 91.68 V.
<h3>
Electric potential between the two charges</h3>
The electric potential between the two charges is calculated as follows;
V = Ed
where;
- V is electric potential
- E is electric field
- d is the distance of the charge
Substitute the given parameters and solve for electric potential,
V = 573 N/c x 0.16 m
V = 91.68 V
Thus, the electric potential between the two charges is 91.68 V.
Learn more about electric potential here: brainly.com/question/26978411
#SPJ4
The answer is B. Sunlight (white light) refracts when it passes through droplets of water in the atmosphere
Answer:
One of the best candidates for a black hole is found in the binary system called A0620-0090. The two objects in the binary system are an orange star, V616 Monocerotis, and a compact object believed to be a black hole. The orbital period of A0620-0090 is 7.75hours, the mass of V616 Monocerotis is estimated to be .67 times the mass of the sun, and the mass of the black hole is estimated to be 3.8 times the mass of the sun. Assuming that the orbits are circular, find the radius of the orbit of the orange star.
Explanation:
I'd say b, precise, here.
If there's an error somewhere in the experiment or project, then it is consistently .... wrong. So, just 'cos you measure something precisely, it doesn't mean that you've measured it accurately. Maybe an example would be a measurement of length. If you used a metal ruler at zero degrees C, you can measure to say half a millimetre. A series of measurements of the same object would give very similar readings. But, if you used same metal ruler at, say 100 celsius (implausible) then you'd probably get a different set of readings. 'cos of the expansion of the metal ruler.
current, the flow of electrons make the current