Technically, I can't answer the question, because you won't
let me see the picture that goes along with it and is a part of it.
But I'm familiar with the set-up, have dealt with the question before,
and I can answer it from my previous experience and general knowledge.
If there is 500g of mass inside the jar when you lower it over
the candle, then there will be 500g of mass at any time after that,
forever, or until you pick up the jar and take some mass out or put
some more in. It doesn't matter how long you wait. It also doesn't
matter whether or not the candle is burning, whether or not the sun
is shining on the jar, or whether somebody comes along and spray-paints
the outside of the jar with black paint. Matter is not created or destroyed.
Whatever mass was inside when the jar got closed stays in there.
Answer: Increase Reaction Rates
Explanation: Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction
Answer:
5600N
Explanation:
Given parameters:
Mass of car = 700kg
Initial velocity = 10m/s
Final velocity = 30m/s
Displacement = 50m
Unknown:
Net force acting on the car = ?
Solution:
To find the force acting on a body, it is pertinent we know the mass and acceleration.
Force = mass x acceleration
Now;
Let us find the acceleration from the kinematics equations:
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
30² = 10² + (2 x a x 50)
900 = 100 + 100a
100a = 800
a = 8m/s²
Therefore;
Force = 700 x 8 = 5600N
the answer would be C
work done = force * distance
wd = 3*2
wd = 6 J
wd = 2*3
wd = 6 J
so the work done is the same