Answer:
x=9.8
Step-by-step explanation:
Answer:
29
Step-by-step explanation:
1) An operator is missing in your statement. Most likely the right expression is:
2x
f(x) = -------------
3x^2 - 3
So, I will work with it and find the result of each one of the statements given to determine their validiy.
2) Statement 1: <span>The
graph approaches 0 as x approaches infinity.
Find the limit of the function as x approaches infinity:
2x
Limit when x →∞ of ------------
3x^2 - 3
Start by dividing numerator and denominator by x^2 =>
2x / x^2 2/x
--------------------------- = ---------------
3x^2 / x^2 - 3 / x^2 3 - 3/x^2
2/∞ 0 0
Replace x with ∞ => ------------ = ------- = ---- = 0
3 - 3/∞ 3 - 0 3
Therefore the statement is TRUE.
3) Statement 2: The graph approaches 0 as x
approaches negative infinity.
</span><span><span>Find the limit of the function as x approaches negative infinity:
2x
Limit when x → - ∞ of ------------
3x^2 - 3
Start by dividing numerator and denominator by x^2 =>
2x / x^2 2/x
--------------------------- = ---------------
3x^2 / x^2 - 3 / x^2 3 - 3/x^2
2/(-∞) 0 0
Replace x with - ∞ => ------------ = ---------- = ---- = 0
3 - 3/(-∞) 3 - 0 3
Therefore, the statement is TRUE.</span>
4) Statement 3: The graph approaches 2/3 as x approaches
infinity.
FALSE, as we already found that the graph approaches 0 when x approaches infinity.
5) Statement 4: The graph approaches –1 as x approaches negative infinity.
</span>
FALSE, as we already found the graph approaches 0 when x approaches negative infinity.
Answer:
Mandy's bakery has 14 cupcakes at the beginning of the day. throughout the day 7 cupcakes were bought. how many cupcakes are left?
Step-by-step explanation:
In simplifying polynomials, we need to remember
that only like terms can be added or subtracted to each other. Also, the order
of solving the basic operators should be followed which is PEMDAS.
<span>3x2y2 − 5xy2 − 3x2y2 + 2x2
The first and the thrid term is equal to zero thus the polynomial is:
</span>− 5xy2 <span>+ 2x2
</span>
The polynomial has two terms with a degree of three.