1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
6

(04.04 MC)

Mathematics
1 answer:
IRINA_888 [86]3 years ago
8 0

Answer:

(04.04 MC)

Point Qis

Step-by-step explanation:

(04.04 MC)

Point Qis

You might be interested in
I NEED HELP ON THE ONES THAT AREN'T CROSSED OFF!!!!!!!!!!!!!!!!!!!!! PLEASEEEEEEEEEEEEEEEEEEEEE ( i already did 8)
jonny [76]

The computation of the word problem shows that the oranges will John have in 12 weeks will be 70 oranges.

<h3>How to solve the word problem?</h3>

The word problem will be that John has 10 oranges and buys 5 more oranges every week. How many oranges will John have in 12 weeks.

The computation will be:

= 10 + 5x

where x= number of weeks.

= 10 + 5x

= 10 + 5(12)

= 10 + 60

= 70 oranges

Learn more about word problems on:

brainly.com/question/13818690

#SPJ1

6 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Solve for the variable 4/2 = 9/x<br> A x = 2/9 b x=4 C =4.5 D x= 18
Lesechka [4]

Answer:

\frac{4}{2}  =  \frac{9}{x}  \\

perform cross multiplication:

(4 \times x) = 9 \times 2 \\ 4x = 18 \\ → \: { \tt{x = 4.5}}

5 0
3 years ago
Một ủy ban an toàn kiểm tra ngẫu nhiên 900 công nhân xây dựng trong thời gian làm việc, thấy có 48 công nhân không mang mũ bảo h
Usimov [2.4K]

Answer:

The percentage of workers not wearing the helmets is 5.3 %.

Step-by-step explanation:

A safety committee randomly examined 900 construction workers during their work, and found that 48 workers were not wearing helmets. Estimate the percentage of workers who do not wear protective masks during their working time with 98% confidence

total workers = 900

Not wearing helmet = 48

Percentage which are not wearing the helmets

= \frac{48}{900}\times 100 = 5.3 %%

6 0
3 years ago
Factor completely: −3x2 + 6x − 9
denis23 [38]
Factor out the -3
(-3)(x^2-2x+3)

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which graph represents the solution to the system of inequalities?
    5·2 answers
  • Find the value of x. 3x, 2x, 55
    15·1 answer
  • 1. fill in the blanks below and write and evaluate an example of a function part1: Ashley earns 17 per hour. define the variable
    9·1 answer
  • Supplementary angles
    13·1 answer
  • Find the inverse variation equation that relates x and y.
    7·1 answer
  • What is the base area of the cone?
    13·1 answer
  • Given lines a, b, and c, if a⊥b and c⊥b then a⊥c. True or false
    10·1 answer
  • The side length of an equilateral triangle is 4x – 5. Which expression represents
    10·1 answer
  • I WILL GIVE BRAINLIEST Before leaving to visit Mexico, Levant traded 270 American dollars and received 3,000 Mexican pesos. When
    9·2 answers
  • Each vertex of a quadrilateral is dilated by a factor of 2 about the point Al-4, 7). What will be the effect on the perimeter of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!