Answer:
C
Step-by-step explanation: Because Median is all the numbers put in order least to greatest. Then the middle number.
Store A: 15, 25, 45, 55, 64
Store B: 22, 35, 40, 65, 71
To find the area of a circle find the radius and square it then multiply by PI
Area = PI x r^2
Answer:
a) 

And we want the probability from 0 to two deviations above the mean and we got 95/2 = 47.5 %
b) 

So one deviation below the mean we have: (100-68)/2 = 16%
c) 

For this case below 2 deviation from the mean we have 2.5% and above 1 deviation from the mean we got 16% and then the percentage between -2 and 1 deviation above the mean we got: (100-16-2.5)% = 81.5%
Step-by-step explanation:
For this case we have a random variable with the following parameters:

From the empirical rule we know that within one deviation from the mean we have 68% of the values, within two deviations we have 95% and within 3 deviations we have 99.7% of the data.
We want to find the following probability:

We can find the number of deviation from the mean with the z score formula:

And replacing we got


And we want the probability from 0 to two deviations above the mean and we got 95/2 = 47.5 %
For the second case:


So one deviation below the mean we have: (100-68)/2 = 16%
For the third case:

And replacing we got:


For this case below 2 deviation from the mean we have 2.5% and above 1 deviation from the mean we got 16% and then the percentage between -2 and 1 deviation above the mean we got: (100-16-2.5)% = 81.5%
The area enclosed by the figure is 4533.48 square meters.
<u>Step-by-step explanation:</u>
Side length of the square = 42m
The semicircle is attached to each side of the square. So the diameter of the semicircle is the length of the square.
Radius of the semicircle = 21m
Area of the square = 42 x 42 = 1764 square meters
Area of 1 semicircle = π(21 x 21) /2
= (3.14) (441) /2
= 1384.74/2
= 692.37 square meters
Area of 4 semicircle = 4 x 692.37
= 2769.48 square meters
Total area = 1764 + 2769.48
= 4533.48 square meters
The area enclosed by the figure is 4533.48 square meters.