The game that is used for the scenario above in terms of fair play is using a balloon. Here, the player will hit the balloon.
<h3>What is the scenario under the balloon game?</h3>
The rule of play are:
This is a classic game with simple rules which are:
- Each player to hit the balloon up and it bonce into the air but when one should not allow it to touch the ground.,
- Players would be tied together in twos and they will juggle a lot of balloon and it have to be more than 1 balloon with one of their hands tied to their back.
A scenario of the worksheet game whose expected value is 0 is given below:
Assume that it costs about $1 for a player to play the billon game and as such, if the player hits a balloon, they will be given $3. what can you say. Can you say that it this game is fair or not? and who has the biggest advantage.
Solution
Note that a game is ”fair” if the expected value is said to be 0. When a player is said to hits a balloon, their net profit often increase by $4. So when the player do not hit a balloon, it drops to $1.
(4)(0.313) + (-1)(0.313)
= 0.939 approximately
Thus, the expected value is $0.939 which tells that the game is fair.
Learn more about fair play from
brainly.com/question/24855677
#SPJ1
<span>46, 37, 16, 24, 47, 23, 19, 31, 25
put in order</span>
16, 19, 23, 24, 25, 31,37, 46, 47
mean = 25
LOWER QUARTILE = (16+ 19+ 23+ 24) / 4 = 20.5
answer
Lower IQR = 20.5
Answer:
The answer should be B
Step-by-step explanation:
Answer:
p ( x > 2746 ) = p ( z > - 1.4552 )
= 1 - 0.072806
= 0.9272
This shows that there is > 92% of a republican candidate winning the election hence I will advice Gallup to declare the Republican candidate winner
Step-by-step explanation:
Given data:
51% of male voters preferred a Republican candidate
sample size = 5490
To win the vote one needs ≈ 2746 votes
In order to advice Gallup appropriately lets consider this as a binomial distribution
n = 5490
p = 0.51
q = 1 - 0.51 = 0.49
Hence
> 5 while
< 5
we will consider it as a normal distribution
From the question :
number of male voters who prefer republican candidate ( mean ) ( u )
= 0.51 * 5490 = 2799.9
std =
=
= 37.0399 ---- ( 1 )
determine the Z-score = (x - u ) / std ---- ( 2 )
x = 2746 , u = 2799.9 , std = 37.0399
hence Z - score = - 1.4552
hence
p ( x > 2746 ) = p ( z > - 1.4552 )
= 1 - 0.072806
= 0.9272
This shows that there is > 92% of a republican candidate winning the election hence I will advice Gallup to declare the Republican candidate winner
Answer:
14•7=98
Step-by-step explanation:
think its help have a good day