Answer:
middle one
Step-by-step explanation:
Answer:
I18 - xI such that x < 18.
ok, first let's what happens if x = 18:
I18 - xI = I18 - 18I = 0
So, at the moment we have the condition:
I18 - xI > 0.
now, if x is a really large negative number, suppose, x = -100
I18 + 100I = I118I = 118
So, as x can freely move in the negative range, we can see that I18 - xI can be any positive number, so the only restriction that we have is:
I18 - xI > 0.
This means that the domain is:
D = (-∞, 18)
and the range is:
R = (0, ∞)
Answer:
Read below.
Step-by-step explanation:
The total number of branches end of the tree is the denominator of the fraction form of probability.
All the total possible outcomes in an organized list will give you a denominator because that's all the outcomes that can happen from that set of data.
Answer: 1.4
Step-by-step explanation: First, swap the sides of the equation so that the one with the variable can be in front.
So, its 2y=2.8
To solve this, you simply divide both sides of the equation by 2.
2 divided by 2 is 0. That leaves you with the y by itself. Then, 2.8 divided by 2 is 1.4
So, y=1.4
Answer:
(x + 1)² = 7
Step-by-step explanation:
Given:
-2x = x² - 6
We'll start by rearranging it to solve for zero:
x² + 2x - 6 = 0
The first term is already a perfect square so that's fine. Normally, if that term had a non-square coefficient, you would need to multiply all terms a value that would change that constant to a perfect square.
Because it's already square (1), we can simply move to the next step, separating the -6 into a value that can be doubled to give us the 2, the coefficient of the second term. That value will of course be 1, giving us:
x² + 2x + 1 - 1 - 6 = 0
Now can group our perfect square on the left and our constants on the right:
x² + 2x + 1 - 7= 0
x² + 2x + 1 = 7
(x + 1)² = 7
To check our answer, we can solve for x:
x + 1 = ± √7
x = -1 ± √7
x ≈ 1.65, -3.65
Let's try one of those in the original equation:
-2x = x² - 6
-2(1.65) = 1.65² - 6
- 3.3 = 2.72 - 6
-3.3 = -3.28
Good. Given our rounding that difference of 2/100 is acceptable, so the answer is correct.