Question 3
if 7x = 28
divide both sides by 7
7x/7 = 28/7
x = 4
This is division property of equality
Question 1
if angle m is 80 degrees the m = 80 degrees
this can be a congruent angles or alternate angles are equal
this is symmetric property of equality
Question 5
m1 = 30 and mz1 = m2, then m2 = 30
this property is transitive property of equality
Question 2
if RS - TU and TU =YP, then RS = YP
this means you can substitute RS with YP
then we have our new expression as
YP - YP
this is substitution property of equality, this is because we are substituting a function with another function
Answer:
x = number of bicycles = 35
y = number of cars = 55
Step-by-step explanation:
Let
x = number of bicycles
y = number of cars
x + y = 80 (1)
2x + 4y = 270 (2)
From (1)
x = 80 - y
Substitute x = 80 - y into (2)
2x + 4y = 270 (2)
2(80 - y) + 4y = 270
160 - 2y + 4y = 270
- 2y + 4y = 270 - 160
2y = 110
y = 110/2
y = 55
Substitute y = 55 into (1)
x + y = 80 (1)
x + 55 = 80
x = 80 - 55
x = 35
x = number of bicycles = 35
y = number of cars = 55
1.
a.) 2q + 5r
2(7) + 5(-2)
14 - 10 = 4
b.) 3(p + 6) + q + r Plug in the numbers
3(5 + 6) + 7 - 2 Solve inside the parentheses first
3(11) + 7 - 2
33 + 5 = 38
2.
a.) m(3m + 4n)
2(3(2) + 4(3))
2(6 + 12)
2(18) = 36
b.) n²(m + p²)
(3)²(2 + (-5)²)
9(2 + 25)
9(27) = 243
c.) 3m(8 + n) + n²
3(2) (8 + 3) + 3²
6(11) + 9
66 + 9 = 75
<u>Differentiate using the Quotient Rule</u> –

![\pink{\twoheadrightarrow \sf \dfrac{d}{dx} \bigg[\dfrac{f(x)}{g(x)} \bigg]= \dfrac{ g(x)\:\dfrac{d}{dx}\bigg[f(x)\bigg] -f(x)\dfrac{d}{dx}\:\bigg[g(x)\bigg]}{g(x)^2}}\\](https://tex.z-dn.net/?f=%5Cpink%7B%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%5Cdfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5Cbigg%5D%3D%20%5Cdfrac%7B%20g%28x%29%5C%3A%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5Bf%28x%29%5Cbigg%5D%20-f%28x%29%5Cdfrac%7Bd%7D%7Bdx%7D%5C%3A%5Cbigg%5Bg%28x%29%5Cbigg%5D%7D%7Bg%28x%29%5E2%7D%7D%5C%5C)
According to the given question, we have –
- f(x) = x^3+5x+2
- g(x) = x^2-1
Let's solve it!

![\green{\twoheadrightarrow \bf \dfrac{d}{dx}\bigg[ \dfrac{x^3+5x+2 }{x^2-1}\bigg]} \\](https://tex.z-dn.net/?f=%5Cgreen%7B%5Ctwoheadrightarrow%20%5Cbf%20%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5B%20%5Cdfrac%7Bx%5E3%2B5x%2B2%20%7D%7Bx%5E2-1%7D%5Cbigg%5D%7D%20%5C%5C)













