X^2 * 5,x^4 so B is the answer
I I'm guessing true if you don't think so then don't take my advice.
You would use 539 and square it on you cal. just once. Then once you do that the answer is not going to be a whole number it is going to have a decimal, so the answer would be 23.22.
(a) It looks like the ODE is
<em>y'</em> = 4<em>x</em> √(1 - <em>y </em>^2)
which is separable:
d<em>y</em>/d<em>x</em> = 4<em>x</em> √(1 - <em>y</em> ^2) => d<em>y</em>/√(1 - <em>y</em> ^2) = 4<em>x</em> d<em>x</em>
Integrate both sides. On the left, substitute <em>y</em> = sin(<em>t </em>) and d<em>y</em> = cos(<em>t</em> ) d<em>t</em> :
∫ d<em>y</em>/√(1 - <em>y</em> ^2) = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / √(1 - sin^2(<em>t</em> )) d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / √(cos^2(<em>t</em> )) d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / |cos(<em>t</em> )| d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
Since we want the substitutiong to be reversible, we implicitly assume that -<em>π</em>/2 ≤ <em>t</em> ≤ <em>π</em>/2, for which cos(<em>t</em> ) > 0, and in turn |cos(<em>t</em> )| = cos(<em>t</em> ). So the left side reduces completely and we get
∫ d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
<em>t</em> = 2<em>x</em> ^2 + <em>C</em>
arcsin(<em>y</em>) = 2<em>x</em> ^2 + <em>C</em>
<em>y</em> = sin(2<em>x</em> ^2 + <em>C </em>)
(b) There is no solution for the initial value <em>y</em> (0) = 4 because sin is bounded between -1 and 1.