Answer:
F=G(m1m2)/Rsquare if radius is given
F=G(m1m2)/dsquare if distance is given
where,
f =gravitational force
G =gravitational constant
m1=mass of one object
m2=mass of another object
d=distance between two object from their center r=radius of earth/planet
Gas "floats" so if there are examples or pictures it would be the one with the most evenly spread out "dots".
Answer:
3 m/s
Explanation:
Average Speed = 
Plug in the numbers, it will be (6m + 3m) divided by (2s + 1s), which is 9m/3s, which equals to 3m/s.
It's the second graph!
it's the only one with a negative gradient.
so the temperature of the ball will fall in water as it looses its heat.
activate windows,:-P
Answer:
v₂ = 5.7 m/s
Explanation:
We will apply the law of conservation of momentum here:

where,
Total Initial Momentum = 340 kg.m/s
m₁ = mass of bike
v₁ = final speed of bike = 0 m/s
m₂ = mass of Sheila = 60 kg
v₂ = final speed of Sheila = ?
Therefore,

<u>v₂ = 5.7 m/s </u>