Complete question:
A block of solid lead sits on a flat, level surface. Lead has a density of 1.13 x 104 kg/m3. The mass of the block is 20.0 kg. The amount of surface area of the block in contact with the surface is 2.03*10^-2*m2, What is the average pressure (in Pa) exerted on the surface by the block? Pa
Answer:
The average pressure exerted on the surface by the block is 9655.17 Pa
Explanation:
Given;
density of the lead, ρ = 1.13 x 10⁴ kg/m³
mass of the lead block, m = 20 kg
surface area of the area of the block, A = 2.03 x 10⁻² m²
Determine the force exerted on the surface by the block due to its weight;
F = mg
F = 20 x 9.8
F = 196 N
Determine the pressure exerted on the surface by the block
P = F / A
where;
P is the pressure
P = 196 / (2.03 x 10⁻²)
P = 9655.17 N/m²
P = 9655.17 Pa
Therefore, the average pressure exerted on the surface by the block is 9655.17 Pa
Answer:
magnet 4
because opposite direction i.e north and south will attract each other
Answer:
the order of arrival is from highest to lowest
star other side of Andromeda> star near side of andromeda> other side of milky way > center of the milky way> nevulosa orion> Pluto> Sum
Explanation:
The light that comes from stars and galaxies travels in a vacuum so its speed is constant and with a value of c = 3 108 m / s, so time will be directly proportional to the distance to the object
x = c t
the order of arrival is from highest to lowest
star other side of Andromeda> star near side of andromeda> other side of milky way > center of the milky way> nevulosa orion> Pluto> Sum
Answer:
(a) The value of the ratio m₁/m₂ is 0.581
(b) the acceleration of the combined masses is 1.139 m/s²
Explanation:
Given;
The acceleration of force applied to M₁, a₁ = 3.10 m/s²
The same force applied to M₂ has acceleration, a₂ = 1.80 m/s²
Let this force = F
According Newton's second law of motion;
F = ma
(a) the value of the ratio m₁/m₂
since the applied force is same in both cases, M₁a₁ = M₂a₂

(b) the acceleration of m₁ and m₂ combined as one object under the action force F
F = ma


Therefore, the acceleration of the combined masses is 1.139 m/s²