My answer would be a bowling ball. The rule for inertia is
Mass is that quantity that is solely dependent upon the inertiaof an object. The more inertiathat an object has, the more mass that it has.
Given that rule, if the Bowling Ball, Hammer, Feather, and Tennis Ball were all the standard size, the answer would have to be the bowling ball. MEYBE
Answer:

Explanation:
The equation that relates heat Q with the temperature change
of a substance of mass <em>m </em>and specific heat <em>c </em>is
.
We want to calculate the final temperature <em>T, </em>so we have:

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add
to our temperature in
to have it in
as it must be):

The radioactive tracer (radiopharmaceuticals) is used to assess bodily function and diagnosing and treating the disease. It is made up of carrier molecules bondeed tightly to radioactive atom. Some interact with specific protein or sugar in the body of the person. Radioactive tracer can be administered through intravenous injection, inhalation, oral ingestion, or direct injection into an organ.
Answer:
Both charges must have the same charge, Qt/2.
Explanation:
Let the two charges have charge Q1 and Q2, respectively.
Use Coulombs's Law to find an expression for the force between the two charges.
, where
Ke is Coulomb's contant and
r is the distance between the charges.
We know from the question that
Q1 + Q2 = Qt
So,
Q2 = Qt - Q1

Simplify to obtain,

In order to find the value of Q1 for which F is the maximum, we will use the optimization technique of calculus.
Differentiate F with respect to Q1,

Equate the differential to 0, to obtain the value of Q1 for which F is the maximum.

It follows that
.
Answer:
θ₂ = 40.5º
Explanation:
For this exercise we must use the law of refraction
n₁ sin θ₁ = n₂ sin θ₂
where index 1 is for the incident ray and index 2 is for the refracted ray
in this case the incident ray has an angle of θ₁ = 60º and the refractive index of the water is
n₂ = 1,333
sin θ₂ =
let's calculate
sin θ₂ = 1 / 1.3333 sin 60
sin θ₂ = 0.64968
θ₂ = sin⁻¹ (0.64968)
θ₂ = 40.5º