Answer:
about 340,000
Step-by-step explanation:
In 10 years, the population dropped to 0.88 of what it was in 2010. At the same rate, in 20 more years, it will drop to 0.88² of what it was in 2020:
2040 population = 440,000·0.88² ≈ 340,000
<h3>
<u>Explanation</u></h3>
- Given the system of equations.

- Solve the system of equations by eliminating either x-term or y-term. We will eliminate the y-term as it is faster to solve the equation.
To eliminate the y-term, we have to multiply the negative in either the first or second equation so we can get rid of the y-term. I will multiply negative in the second equation.

There as we can get rid of the y-term by adding both equations.

Hence, the value of x is 3. But we are not finished yet because we need to find the value of y as well. Therefore, we substitute the value of x in any given equations. I will substitute the value of x in the second equation.

Hence, the value of y is 4. Therefore, we can say that when x = 3, y = 4.
- Answer Check by substituting both x and y values in both equations.
<u>First</u><u> </u><u>Equation</u>

<u>Second</u><u> </u><u>Equation</u>

Hence, both equations are true for x = 3 and y = 4. Therefore, the solution is (3,4)
<h3>
<u>Answer</u></h3>

To find the area of a circle, you do π × diameter (in this case 10). They have told you to use 3.142 as π, so you do 3.142 × 10 = 31.42. Because it's a semi-circle, you need to halve 31.42 to get 16.21, which is the answer
This is a linear differential equation of first order. Solve this by integrating the coefficient of the y term and then raising e to the integrated coefficient to find the integrating factor, i.e. the integrating factor for this problem is e^(6x).
<span>Multiplying both sides of the equation by the integrating factor: </span>
<span>(y')e^(6x) + 6ye^(6x) = e^(12x) </span>
<span>The left side is the derivative of ye^(6x), hence </span>
<span>d/dx[ye^(6x)] = e^(12x) </span>
<span>Integrating </span>
<span>ye^(6x) = (1/12)e^(12x) + c where c is a constant </span>
<span>y = (1/12)e^(6x) + ce^(-6x) </span>
<span>Use the initial condition y(0)=-8 to find c: </span>
<span>-8 = (1/12) + c </span>
<span>c=-97/12 </span>
<span>Hence </span>
<span>y = (1/12)e^(6x) - (97/12)e^(-6x)</span>