Regard the principle of utilization of two gas.
Make a consistent control of hardware containing gas.
Make a consistent control of weight diminishing valves giving gas.
No smoking zone.
The equilibrium vapour pressure is typically the pressure exerted by a liquid .... it is A FUNCTION of temperature...
Explanation:
By way of example, chemists and physicists habitually use
P
saturated vapour pressure
...where
P
SVP
is the vapour pressure exerted by liquid water. At
100
∘
C
,
P
SVP
=
1
⋅
a
t
m
. Why?
Well, because this is the normal boiling point of water: i.e. the conditions of pressure (i.e. here
1
⋅
a
t
m
) and temperature, here
100
∘
C
, at which the VAPOUR PRESSURE of the liquid is ONE ATMOSPHERE...and bubbles of vapour form directly in the liquid. As an undergraduate you should commit this definition, or your text definition, to memory...
At lower temperatures, water exerts a much lower vapour pressure...but these should often be used in calculations...especially when a gas is collected by water displacement. Tables of
saturated vapour pressure
are available.
The silicon wafer contains 20.96 g of silicon.
The mole of a substance is related to its mass and molar mass by the following equation:
<h3>Mole = mass / molar mass ....... (1)</h3>
Making mass the subject of the above equation, we have
<h3>Mass = mole × molar mass ..... (2)</h3>
With the above formula (i.e equation 2), we can obtain the mass of silicon in the wafer as follow:
Mole silicon = 0.746 mole
Molar mass of silicon = 28.09 g/mol
<h3>Mass of silicon =? </h3>
Mass = mole × molar mass
Mass = 0.746 × 28.09
<h3>Mass of silicon = 20.96 g</h3>
Therefore, the mass of silicon in the wafer is 20.96 g
Learn more: brainly.com/question/24639749
Temperature. Water is an example. When water is at room temp. its liquid. When water is at boiling temp. It is a gas. And when water is at freezing temp. Its a solid.