Answer:
light with a high enough intensity
Explanation:
Answer is: the maximum concentration of Pb²⁺ is 6.8·10⁻³ M.
Chemical reaction 1: PbCl₂(s) → Pb²⁺(aq) + 2Cl⁻(aq).
Chemical reaction 2: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Ksp(PbCl₂) = 1.7·10⁻⁵.
c(NaCl) = c(Cl⁻) = 0.0500 M.
Ksp(PbCl₂) = c(Pb²⁺) · c(Cl⁻)².
c(Pb²⁺) = Ksp(PbCl₂) ÷ c(Cl⁻)².
c(Pb²⁺) = 1.7·10⁻⁵ M³ ÷ (0.0500 M)².
c(Pb²⁺) = 0.000017 M³ ÷ 0.0025 M².
c(Pb²⁺) = 0.0068 M = 6.8·10⁻³ M.
Explanation:
CH₃CH₃ + Cl₂ → CH₃CH₂Cl + HCl
- This reaction take place in the presence of light/UV rays. (i.e, photochemical reaction)
- It's a Chlorination reaction because here there's addition of chlorine.
- It's a substitution reaction because Cl substituted H from place and attach there.
Option which is NOT correct is
Option A (It's not an elimination reaction)
Therefore,
Option A is correct✔
Answer:
See images attached and explanation
Explanation:
I have drawn three possible structures of ZX2. We have to remember that the shapes of molecules could be predicted on the basis of the Valence shell electron pair repulsion theory.
The number of electrons on the valence shell of the central atom determines the shape of the molecule. We have also been told that X is not hydrogen.
If the two X atoms are arranged at a bond angle of 180 degrees, we could have either structure I or II. We will have these structures if the Z atom is sp2 hybridized.
Similarly, if the Z atom is sp3 hybridized, we may have structure III in which the molecule is bent with a bond angle less than 109 degrees. This may result from the presence of a lone pair on Z.
Note that all these structures obey the octet rule.