1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saveliy_v [14]
3 years ago
15

Any chance with 23-25?

Mathematics
1 answer:
iogann1982 [59]3 years ago
4 0
This math answer is -2
You might be interested in
Sean said that the slope of the line is 3. is he correct?​
krok68 [10]

Answer:

yes

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Please help. I’ll mark you as brainliest if correct!
erica [24]

Step-by-step explanation:

Nicole starts with the budget:

$395

Now, she only expects to pay half the deposit;

$72 ÷ 2 = $36

Subtract this from the budget:

$395 - $36 = $359

Divide by cost per hour:

$359 ÷ $60 = 5.983333... (3 repeating)

This means, Nicole can rent a <em>maximum</em><em> </em>of 5 hours with her budget. The inequality would be

x  \leqslant 5

5 0
3 years ago
Based on the number of voids, a ferrite slab is classified as either high, medium, or low. Historically, 5% of the slabs are cla
AnnyKZ [126]

Answer:

(a) Name: Multinomial distribution

Parameters: p_1 = 5\%   p_2 = 85\%   p_3 = 10\%  n = 20

(b) Range: \{(x,y,z)| x + y + z=20\}

(c) Name: Binomial distribution

Parameters: p_1 = 5\%      n = 20

(d)\ E(x) = 1   Var(x) = 0.95

(e)\ P(X = 1, Y = 17, Z = 3) = 0

(f)\ P(X \le 1, Y = 17, Z = 3) =0.07195

(g)\ P(X \le 1) = 0.7359

(h)\ E(Y) = 17

Step-by-step explanation:

Given

p_1 = 5\%

p_2 = 85\%

p_3 = 10\%

n = 20

X \to High Slabs

Y \to Medium Slabs

Z \to Low Slabs

Solving (a): Names and values of joint pdf of X, Y and Z

Given that:

X \to Number of voids considered as high slabs

Y \to Number of voids considered as medium slabs

Z \to Number of voids considered as low slabs

Since the variables are more than 2 (2 means binomial), then the name is multinomial distribution

The parameters are:

p_1 = 5\%   p_2 = 85\%   p_3 = 10\%  n = 20

And the mass function is:

f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z

Solving (b): The range of the joint pdf of X, Y and Z

Given that:

n = 20

The number of voids (x, y and z) cannot be negative and they must be integers; So:

x + y + z = n

x + y + z = 20

Hence, the range is:

\{(x,y,z)| x + y + z=20\}

Solving (c): Names and values of marginal pdf of X

We have the following parameters attributed to X:

p_1 = 5\% and n = 20

Hence, the name is: Binomial distribution

Solving (d): E(x) and Var(x)

In (c), we have:

p_1 = 5\% and n = 20

E(x) = p_1* n

E(x) = 5\% * 20

E(x) = 1

Var(x) = E(x) * (1 - p_1)

Var(x) = 1 * (1 - 5\%)

Var(x) = 1 * 0.95

Var(x) = 0.95

(e)\ P(X = 1, Y = 17, Z = 3)

In (b), we have: x + y + z = 20

However, the given values of x in this question implies that:

x + y + z = 1 + 17 + 3

x + y + z = 21

Hence:

P(X = 1, Y = 17, Z = 3) = 0

(f)\ P{X \le 1, Y = 17, Z = 3)

This question implies that:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) + P(X = 1, Y = 17, Z = 3)

Because

0, 1 \le 1 --- for x

In (e), we have:

P(X = 1, Y = 17, Z = 3) = 0

So:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3) +0

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)

In (a), we have:

f_{XYZ} = P(X = x; Y = y; Z = z) = \frac{n!}{x!y!z!} * p_1^xp_2^yp_3^z

So:

P(X=0; Y=17; Z = 3) = \frac{20!}{0! * 17! * 3!} * (5\%)^0 * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20!}{1 * 17! * 3!} * 1 * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20!}{17! * 3!} * (85\%)^{17} * (10\%)^{3}

Expand

P(X=0; Y=17; Z = 3) = \frac{20*19*18*17!}{17! * 3*2*1} * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = \frac{20*19*18}{6} * (85\%)^{17} * (10\%)^{3}

P(X=0; Y=17; Z = 3) = 20*19*3 * (85\%)^{17} * (10\%)^{3}

Using a calculator, we have:

P(X=0; Y=17; Z = 3) = 0.07195

So:

P(X \le 1, Y = 17, Z = 3) =P(X = 0, Y = 17, Z = 3)

P(X \le 1, Y = 17, Z = 3) =0.07195

(g)\ P(X \le 1)

This implies that:

P(X \le 1) = P(X = 0) + P(X = 1)

In (c), we established that X is a binomial distribution with the following parameters:

p_1 = 5\%      n = 20

Such that:

P(X=x) = ^nC_x * p_1^x * (1 - p_1)^{n - x}

So:

P(X=0) = ^{20}C_0 * (5\%)^0 * (1 - 5\%)^{20 - 0}

P(X=0) = ^{20}C_0 * 1 * (1 - 5\%)^{20}

P(X=0) = 1 * 1 * (95\%)^{20}

P(X=0) = 0.3585

P(X=1) = ^{20}C_1 * (5\%)^1 * (1 - 5\%)^{20 - 1}

P(X=1) = 20 * (5\%)* (1 - 5\%)^{19}

P(X=1) = 0.3774

So:

P(X \le 1) = P(X = 0) + P(X = 1)

P(X \le 1) = 0.3585 + 0.3774

P(X \le 1) = 0.7359

(h)\ E(Y)

Y has the following parameters

p_2 = 85\%  and    n = 20

E(Y) = p_2 * n

E(Y) = 85\% * 20

E(Y) = 17

8 0
2 years ago
Write a rule for the linear function on the table
NISA [10]
It's A

11-5=6
5-2=3

6/3=2
7 0
3 years ago
Factoring without Combining Like Terms
Alex_Xolod [135]

Answer:

(x + 3)(2x + 5)

Step-by-step explanation:

Given

2x² + 6x + 5x + 15 ← grouping the terms

= (2x² + 6x) + (5x + 15) ← factor each group

= 2x(x + 3) + 5(x + 3) ← factor out (x + 3) from each term

= (x + 3)(2x + 5) ← in factored form

8 0
3 years ago
Other questions:
  • If 2x+4=10 , then x=3
    9·2 answers
  • Express 4.4 as a percent.
    14·2 answers
  • 45 points! Help me on the attached file, please :D
    6·1 answer
  • If (x-2)^2 =49 then x could be​
    7·1 answer
  • Find x in the given figure. answers : 55° 125° 35° 60°
    15·1 answer
  • 6. What is the tens' digit of the largest 4-digit even number which uses each of the digits 5, 7, 8, and 9 exactly once?
    9·1 answer
  • Rodrigo traveled at an average speed of 55 miles per hour for 5 hours to get from one national park to the next on his vacation.
    14·1 answer
  • Pls help with asap thxxu! :)
    7·2 answers
  • Solve.<br> 1<br> 3/4<br> +<br> 7/8<br> =<br> 2 1/4<br> 3 1/2<br> 2 3/8<br> 2 5/8
    7·1 answer
  • What dose this equal 8n - 3 = -53
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!