10% = 10g/100ml. Ergo, 15ml/100ml (10g) = 1500mg of KCL
.9% NACL = 9g/1000mL, Ergo = 9000mg NaCl
Now we have to figure out how many mEqs of each salt we have.
MW of NaCl = 58.5
MW of KCl = 74.5
So, in moles, we have:
1500 KCl / 74.5 = 20.13 mmol KCl
9000 NaCl / 58.5 = 153.85mmol NaCl
Because the valence of both ions is one, as an example, it would be both 20.13 mEq of Cl- and K+ from 20.13 mmoles of KCL.
So, just add the two together, 20.13 + 153.85 = 174-ish.
Answer:
4 students would get jellybeans because 32 divided by 4 would be 8 and 8 times 4 is 32. hope this helps! :D
Step-by-step explanation:
brainliest plz?
4+5 and 5+4 because they use the same numbers but just reversed
Answer:
True
Step-by-step explanation:
The size of the vertex cover is atleast twice the size of the maximum edge. Vertex must contain atleast one vertex from the matched edge. Vertex are never the strong dual solutions of each other.
When you roll a number cube, there is a possibility of a number from 1 to 6 appearing. i.e. 1, 2, 3, 4, 5, or 6 can appear.
The same goes for the second number cube.
The table below presents the possible outcomes of rolling two number cubes with the sum written as exponent.
![\begin{center} \begin{tabular} {| c || c | c | c | c | c | c |} & 1 & 2 & 3 & 4 & 5 & 6 \\ [1ex] 1 & \{1,1\}^2 & \{1,2\}^3 & \{1,3\}^4 & \{1,4\}^5 & \{1,5\}^6 & \{1,6\}^7 \\ 2 & \{2,1\}^3 & \{2,2\}^4 & \{2,3\}^5 & \{2,4\}^6 & \{2,5\}^7 & \{2,6\}^8 \\ 3& \{3,1\}^4 & \{3,2\}^5 & \{3,3\}^6 & \{3,4\}^7 & \{3,5\}^8 & \{3,6\}^9 \\ 4 & \{4,1\}^5 & \{4,2\}^6 & \{4,3\}^7 & \{4,4\}^8 & \{4,5\}^9 & \{4,6\}^{10} \\ \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%20%7B%7C%20c%20%7C%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%7D%0A%26%201%20%26%202%20%26%203%20%26%204%20%26%205%20%26%206%20%5C%5C%20%5B1ex%5D%0A1%20%26%20%5C%7B1%2C1%5C%7D%5E2%20%26%20%5C%7B1%2C2%5C%7D%5E3%20%26%20%5C%7B1%2C3%5C%7D%5E4%20%26%20%5C%7B1%2C4%5C%7D%5E5%20%26%20%5C%7B1%2C5%5C%7D%5E6%20%26%20%5C%7B1%2C6%5C%7D%5E7%20%5C%5C%20%0A2%20%26%20%5C%7B2%2C1%5C%7D%5E3%20%26%20%5C%7B2%2C2%5C%7D%5E4%20%26%20%5C%7B2%2C3%5C%7D%5E5%20%26%20%5C%7B2%2C4%5C%7D%5E6%20%26%20%5C%7B2%2C5%5C%7D%5E7%20%26%20%5C%7B2%2C6%5C%7D%5E8%20%5C%5C%20%0A3%26%20%5C%7B3%2C1%5C%7D%5E4%20%26%20%5C%7B3%2C2%5C%7D%5E5%20%26%20%5C%7B3%2C3%5C%7D%5E6%20%26%20%5C%7B3%2C4%5C%7D%5E7%20%26%20%5C%7B3%2C5%5C%7D%5E8%20%26%20%5C%7B3%2C6%5C%7D%5E9%20%5C%5C%20%0A4%20%26%20%5C%7B4%2C1%5C%7D%5E5%20%26%20%5C%7B4%2C2%5C%7D%5E6%20%26%20%5C%7B4%2C3%5C%7D%5E7%20%26%20%5C%7B4%2C4%5C%7D%5E8%20%26%20%5C%7B4%2C5%5C%7D%5E9%20%26%20%5C%7B4%2C6%5C%7D%5E%7B10%7D%20%5C%5C%20%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)

From the table it can be seen that the sums: 2 and 12 appeared only once and hence will represent the shortest bars if the distribution is represented in a bar chart.
Therefore, the <span>two sums that are represented by the shortest bars on a bar graph of this distribution</span> are 2 and 12.